【題目】下列命題中錯(cuò)誤的是

A. 若命題為真命題, 命題為假命題, 則命題“”為真命題

B. 命題“若,則”為真命題

C. 對于命題,,則,

D. ”是“”的充分不必要條件個(gè)

【答案】D

【解析】

由復(fù)合命題的真值表即可判斷A;由原命題的逆否命題的真假,可判斷B

由全稱命題的否定為特稱命題,可判斷C;由二次方程的解法,結(jié)合充分必要條件的定義可判斷D

若命題p為真命題,命題q為假命題,則¬q為真命題,

命題“p∨(¬q)”為真命題,故A正確;

命題“若x+y≠5,則x≠2或y≠3”的逆否命題為“若x=2且y=3,則x+y=5”為真命題,

可得原命題為真命題,故B正確;

命題px∈R,x2+x+1>0,則¬px0∈R,x02+x0+1≤0,故C正確;

x=1”可推得“x2﹣3x+2=0”,反之不成立,

x2﹣3x+2=0”是“x=1”的必要不充分條件,故D錯(cuò)誤.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知直線,圓的圓心為,且經(jīng)過點(diǎn)

1)求圓的方程;

2)若圓與圓關(guān)于直線對稱,點(diǎn)分別為圓,上任意一點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)證明:ADPB.

(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量單位:萬元)和收益單位:萬元)的數(shù)據(jù)如下表

月份

廣告投入量

收益

他們分別用兩種模型①,分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值

Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說明理由

Ⅱ)殘差絕對值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除

。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程;

ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少?

附:對于一組數(shù)據(jù),,……,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C:(a>0,b>0)的漸近線方程為y=±x,右頂點(diǎn)為(1,0).

(1)求雙曲線C的方程;

(2)已知直線y=x+m與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)為,當(dāng)x0≠0時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知高中學(xué)生的數(shù)學(xué)成績與物理成績具有線性相關(guān)關(guān)系,在一次考試中某班7名學(xué)生的數(shù)學(xué)成績與物理成績?nèi)缦卤恚?/span>

數(shù)學(xué)成績

88

83

117

92

108

100

112

物理成績

94

91

108

96

104

101

106

1)求這7名學(xué)生的數(shù)學(xué)成績的極差和物理成績的平均數(shù);

2)求物理成績對數(shù)學(xué)成績的線性回歸方程;若某位學(xué)生的數(shù)學(xué)成績?yōu)?/span>110分,試預(yù)測他的物理成績是多少?

下列公式與數(shù)據(jù)可供參考:

用最小二乘法求線性回歸方程的系數(shù)公式:;

,,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種新產(chǎn)品投放市場一段時(shí)間后,經(jīng)過調(diào)研獲得了時(shí)間(天數(shù))與銷售單價(jià)(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點(diǎn)圖(如圖).

1.63

37.8

0.89

5.15

0.92

18.40

表中.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適合作價(jià)格關(guān)于時(shí)間的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程.

3)若該產(chǎn)品的日銷售量(件)與時(shí)間的函數(shù)關(guān)系為,求該產(chǎn)品投放市場第幾天的銷售額最高?最高為多少元?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且存在不同的實(shí)數(shù)x1,x2,x3,使得fx1=fx2=fx3),則x1x2x3的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案