【題目】已知函數(shù).
(1)①求證:當(dāng)任意取值時,的圖像始終經(jīng)過一個定點,并求出該定點坐標(biāo);
②若的圖像在該定點處取得極值,求的值;
(2)求證:當(dāng)時,函數(shù)有唯一零點.
【答案】(1)①見解析,定點的坐標(biāo)為;②(2)見解析
【解析】
(1)①由可得,所以的圖象始終經(jīng)過一個定點;②對函數(shù)求導(dǎo),利用函數(shù)在此定點處有極值,導(dǎo)函數(shù)值等于零列方程求解即可;
(2)可知已經(jīng)有零點1,只需要證明函數(shù)再無其它零點即可,當(dāng)時,,在時無零點;當(dāng),且時,,所以,在時也無零點.
(1)①由可得,,
所以的圖像始終經(jīng)過一個定點的坐標(biāo)為;
②因為,
因為的圖像在該定點處取得極值,所以,所以,
當(dāng)時,,滿足:在左右側(cè)異號,
所以符合題意;
(2)因為,所以已經(jīng)有一個零點1,
下面只需要證明函數(shù)在無其它零點了.
因為且時,,
所以在時無零點,
因為,
當(dāng),且時,,所以,
所以在時遞增,所以當(dāng)時,
所以在時也無零點,
所以時,有唯一零點1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 經(jīng)過點,焦距為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線與橢圓交于不同的兩點、,線段的垂直平分線交軸交于點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,點A的極坐標(biāo)為,直線l的極坐標(biāo)方程為
(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;
(2)若B是曲線C上的動點,G為線段的中點.求點G到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線的焦點,點在軸上,為坐標(biāo)原點,且滿足,經(jīng)過點且垂直于軸的直線與拋物線交于、兩點,且.
(1)求拋物線的方程;
(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,,為橢圓的左、右頂點,橢圓的右焦點為,橢圓的離心率為.
(1)設(shè)直線與橢圓交于,兩點,且,求的值;
(2)設(shè)過點且斜率為1的直線與橢圓交于,(其中,分別在軸的上、下方)兩點,當(dāng)時,記、的面積分別為、,求的最小值,并求此時橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線,曲線(為參數(shù)),以坐標(biāo)原點O為極點,以x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求,的極坐標(biāo)方程;
(2)射線l的極坐標(biāo)方程為,若l分別與,交于異于極點的,兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)期間,全國人民都在抗擊“新型冠狀病毒肺炎”的斗爭中.當(dāng)時武漢多家醫(yī)院的醫(yī)用防護(hù)物資庫存不足,某醫(yī)院甚至面臨斷貨危機(jī),南昌某生產(chǎn)商現(xiàn)有一批庫存的醫(yī)用防護(hù)物資,得知消息后,立即決定無償捐贈這批醫(yī)用防護(hù)物資,需要用A、B兩輛汽車把物資從南昌緊急運至武漢.已知從南昌到武漢有兩條合適路線選擇,且選擇兩條路線所用的時間互不影響.據(jù)調(diào)查統(tǒng)計2000輛汽車,通過這兩條路線從南昌到武漢所用時間的頻數(shù)分布表如下:
所用的時間(單位:小時) | ||||
路線1的頻數(shù) | 200 | 400 | 200 | 200 |
路線2的頻數(shù) | 100 | 400 | 400 | 100 |
假設(shè)汽車A只能在約定交貨時間的前5小時出發(fā),汽車B只能在約定交貨時間的前6小時出發(fā)(將頻率視為概率).為最大可能在約定時間送達(dá)這批物資,來確定這兩車的路線.
(1)汽車A和汽車B應(yīng)如何選擇各自的路線.
(2)若路線1、路線2的“一次性費用”分別為3.2萬元、1.6萬元,且每車醫(yī)用物資生產(chǎn)成本為40萬元(其他費用忽略不計),以上費用均由生產(chǎn)商承擔(dān),作為援助金額的一部分.根據(jù)這兩輛車到達(dá)時間分別計分,具體規(guī)則如下(已知兩輛車到達(dá)時間相互獨立,互不影響):
到達(dá)時間與約定時間的差x(單位:小時) | |||
該車得分 | 0 | 1 | 2 |
生產(chǎn)商準(zhǔn)備根據(jù)運輸車得分情況給出現(xiàn)金排款,兩車得分和為0,捐款40萬元,兩車得分和每增加1分,捐款增加20萬元,若汽車A、B用(1)中所選的路線運輸物資,記該生產(chǎn)商在此次援助活動中援助總額為Y(萬元),求隨機(jī)變量Y的期望值,(援助總額一次性費用生產(chǎn)成本現(xiàn)金捐款總額)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考方案規(guī)定,普通高中學(xué)業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計入高考總成績,即“選擇考”成績根據(jù)學(xué)生考試時的原始卷面分?jǐn)?shù),由高到低進(jìn)行排序,評定為A,B,C,D,E五個等級.某試點高中2019年參加“選擇考”總?cè)藬?shù)是2017年參加“選擇考”總?cè)藬?shù)的2倍,為了更好地分析該校學(xué)生“選擇考”的水平情況,統(tǒng)計了該校2017年和2019年“選擇考”成績等級結(jié)果,得到如圖表:
針對該校“選擇考”情況,2019年與2017年比較,下列說法正確的是( )
A.獲得A等級的人數(shù)不變B.獲得B等級的人數(shù)增加了1倍
C.獲得C等級的人數(shù)減少了D.獲得E等級的人數(shù)不變
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com