【題目】如圖,在四棱錐PABCD中,已知PA平面ABCD,且四邊形ABCD為直角梯形,ABC=∠BAD,PAAD=2,ABBC=1,點(diǎn)ME分別是PA、PD的中點(diǎn)

(1)求證:CE//平面BMD

(2)點(diǎn)Q為線段BP中點(diǎn),求直線PA與平面CEQ所成角的余弦值.

【答案】(1)見解析;(2).

【解析】

(1) 連接ME,通過對(duì)邊關(guān)系得到四邊形為平行四邊形,所以,進(jìn)而得到線面平行;(2)建立坐標(biāo)系,進(jìn)而得到直線PA的方向向量,和面的法向量,進(jìn)而得到線面角.

(1)連接ME,因?yàn)辄c(diǎn)分別是的中點(diǎn),所以,所以,所以四邊形為平行四邊形,所以.又因?yàn)?/span>平面,平面,所以平面.

(2)如圖,以為坐標(biāo)原點(diǎn)建立空間坐標(biāo)系,則

,

設(shè)平面的法向量為,列方程組求得其中一個(gè)法向量為,設(shè)直線與平面所成角大小為,于是

,

進(jìn)而求得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓是橢圓內(nèi)任一點(diǎn).設(shè)經(jīng)過的兩條不同直線分別于橢圓交于點(diǎn)的斜率分別為

1)當(dāng)經(jīng)過橢圓右焦點(diǎn)且中點(diǎn)時(shí),求:

①橢圓的標(biāo)準(zhǔn)方程;

②四邊形面積的取值范圍.

2)當(dāng)時(shí),若點(diǎn)重合于點(diǎn),且.求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,曲線由曲線和曲線組成,其中點(diǎn)為曲線所在圓錐曲線的焦點(diǎn),點(diǎn)為曲線所在圓錐曲線的焦點(diǎn).

(Ⅰ)若,求曲線的方程;

(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點(diǎn),求證:弦的中點(diǎn)必在曲線的另一條漸近線上;

(Ⅲ)對(duì)于(Ⅰ)中的曲線,若直線過點(diǎn)交曲線于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)的焦點(diǎn)到點(diǎn)的距離為.

1)求拋物線的方程;

2)過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,點(diǎn)、分別在第一和第二象限內(nèi),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會(huì)員優(yōu)惠活動(dòng):具體收費(fèi)標(biāo)準(zhǔn)如下:

消費(fèi)次數(shù)

1

2

3

不少于4

收費(fèi)比例

0.95

0.90

0.85

0.80

現(xiàn)隨機(jī)抽取了100位會(huì)員統(tǒng)計(jì)它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:

消費(fèi)次數(shù)

1

2

3

不少于4

頻數(shù)

60

25

10

5

假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:

1)估計(jì)1位會(huì)員至少消費(fèi)兩次的概率

2)某會(huì)員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3sin2θ)=12,直線l的參數(shù)方程為t為參數(shù)),直線l與曲線C交于MN兩點(diǎn).

1)若點(diǎn)P的極坐標(biāo)為(2,π),求|PM||PN|的值;

2)求曲線C的內(nèi)接矩形周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1+a2+…+anan+12.

1)若a12,求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列1,a2a4,b1,b2bn,成等差數(shù)列,求數(shù)列{bn}的前n項(xiàng)和為Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高一高二各班體育節(jié)的表現(xiàn)情況,統(tǒng)計(jì)了高一高二各班的得分情況并繪成如圖所示的莖葉圖,則下列說法正確的是(

A.高一年級(jí)得分中位數(shù)小于高二年級(jí)得分中位數(shù)

B.高一年級(jí)得分方差大于高二年級(jí)得分方差

C.高一年級(jí)得分平均數(shù)等于高二年級(jí)得分平均數(shù)

D.高一年級(jí)班級(jí)得分最低為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 的左、右焦點(diǎn)分別為,作傾斜角為的直線與軸和雙曲線的右支分別交于兩點(diǎn),若點(diǎn)平分線段,則該雙曲線的離心率是

A. B. C. 2 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案