已知曲線C:y=-,若C與有兩個(gè)不同的公共點(diǎn),求a的取值范圍.

答案:
解析:

解:設(shè)P(x,y)是曲線y=-+x+2上任一點(diǎn),它關(guān)于點(diǎn)(a,2a)的對(duì)稱點(diǎn)是,代入拋物線C的方程便得到了+2a-2).聯(lián)立曲線C與的方程并消去y得:+a-2=0.∵x∈R,由△>0得-2<a<1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

17、已知曲線C:y=x3-x+2和點(diǎn)A(1,2),求過點(diǎn)A的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-2x+3
(Ⅰ)求曲線C在x=-1處的切線方程;
(Ⅱ)點(diǎn)P在曲線C上運(yùn)動(dòng),曲線C在點(diǎn)P處的切線的傾斜角的范圍是[0,
π4
]
,求點(diǎn)P的橫坐標(biāo)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=-x2+x+2關(guān)于點(diǎn)M(-1,-2)對(duì)稱的曲線為Cn,且曲線C與Cn有兩個(gè)不同的交點(diǎn)A、B,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=2x2-x3,點(diǎn)P(0,-4),直線l過點(diǎn)P且與曲線C相切于點(diǎn)Q,則點(diǎn)Q的橫坐標(biāo)為
-1
-1
,切線方程為
7x+y+4=0
7x+y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取線段OQ的中點(diǎn)A1,過A1作x軸的垂線交曲線C于P1,過P1作y軸的垂線交RQ于B1,記a1為矩形A1P1B1Q的面積.分別取線段OA1,P1B1的中點(diǎn)A2,A3,過A2,A3分別作x軸的垂線交曲線C于P2,P3,過P2,P3分別作y 軸的垂線交A1P1,RB1于B2,B3,記a2為兩個(gè)矩形A2P2B2A1與矩形A3P3B3B1的面積之和.以此類推,記an為2n-1個(gè)矩形面積之和,從而得數(shù)列{an},設(shè)這個(gè)數(shù)列的前n項(xiàng)和為Sn
(Ⅰ) 求a2與an;
(Ⅱ) 求Sn,并證明Sn
13

查看答案和解析>>

同步練習(xí)冊(cè)答案