【題目】種子發(fā)芽率與晝夜溫差有關(guān).某研究性學(xué)習(xí)小組對此進行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發(fā)芽數(shù),如下表:

(I)從3月12日至3月16日中任選2天,記發(fā)芽的種子數(shù)分別為c,d,求事件“c,d均不小于25”的概率;

(II)請根據(jù)3月13日至3月15日的三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程

(III)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)誤差均不超過2顆,則認為回歸方程是可靠的,試用3月12日與16日的兩組數(shù)據(jù)檢驗,(II)中的回歸方程是否可靠?

【答案】(1) ;(2) ;(3)詳見解析.

【解析】試題分析:(1)由列舉法得出從5天中任選2天的基本事件, 選出的二天種子發(fā)芽數(shù)均不小于25的基本事件,根據(jù)古典概型得出概率;(2)先求出平均數(shù)和代入公式,求出線性回歸方程;(3)將代入方程,與(II)中的回歸方程進行比較,得出結(jié)論.

試題解析:(Ⅰ)從5天中任選2天,共有10個基本事件:(12日,13日),(12日,14日),(12日,15日),

(12日,16日),(13日,14日),(13日,15日),(13日,16日),(14日,15日),(14日,16日),(15日,16日).

選出的二天種子發(fā)芽數(shù)均不小于25共有3個基本事件:(13日,14日),(13日,15日),(14日,15日).

∴事件“均不小于25”的概率為.

5 =2

.

關(guān)于的線性回歸方程為.

(Ⅲ)當(dāng)時,

當(dāng)時,

∴回歸方程是可靠的.

點睛:具有以下兩個特點的概率模型稱為古典概率模型,簡稱古典概型:(1)試驗中所有可能出現(xiàn)的基本事件只有有限個.(2)每個基本事件出現(xiàn)的可能性相等.如果一次試驗中可能出現(xiàn)的結(jié)果有n個,而且所有結(jié)果出現(xiàn)的可能性都相等,那么每一個基本事件的概率都是;如果某個事件A包括的結(jié)果有m個,那么事件A的概率P(A)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用簡單隨機抽樣從某小區(qū)抽取100戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50到350度之間,頻率分布直方圖如圖所示.在這些用戶中,用電量落在區(qū)間[150,250]內(nèi)的戶數(shù)為(

A.46
B.48
C.50
D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

1)求不等式的解集

2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+ax﹣ + ,在區(qū)間[0,1]上的最大值是2,求函數(shù)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題。
(1)求橢圓 的長軸和短軸的長、離心率、焦點和頂點的坐標(biāo).
(2)求焦點在y軸上,焦距是4,且經(jīng)過點M(3,2)的橢圓的標(biāo)準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若兩集合A=[0,3],B=[0,3],分別從集合A、B中各任取一個元素m、n,即滿足m∈A,n∈B,記為(m,n), (Ⅰ)若m∈Z,n∈Z,寫出所有的(m,n)的取值情況,并求事件“方程 所對應(yīng)的曲線表示焦點在x軸上的橢圓”的概率;
(Ⅱ)求事件“方程 所對應(yīng)的曲線表示焦點在x軸上的橢圓,且長軸長大于短軸長的 倍”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,左、右頂點分別為為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為.設(shè)點,連接PA交橢圓于點C.

(I)求橢圓E的方程;

(II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)設(shè),試討論單調(diào)性;

(2)設(shè),當(dāng)時,任意,存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點,作EF⊥PB交PB于點F.

(1)證明 PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求VBEFD

查看答案和解析>>

同步練習(xí)冊答案