【題目】已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列a1+a2=2( ),a3+a4+a5=64 + +
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=(an+ 2 , 求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】
(1)解:設(shè)正等比數(shù)列{an}首項(xiàng)為a1,公比為q,由題意得: ∴an=2n1(6分)
(2)解:

∴bn的前n項(xiàng)和Tn=


【解析】(1)由題意利用等比數(shù)列的通項(xiàng)公式建立首項(xiàng)a1與公比q的方程,然后求解即可(2)由bn的定義求出通項(xiàng)公式,在由通項(xiàng)公式,利用分組求和法即可求解
【考點(diǎn)精析】利用等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和對(duì)題目進(jìn)行判斷即可得到答案,需要熟知通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知函數(shù)f(x)=sin(3x+B)+cos(3x+B)是偶函數(shù),且b=f( ).
(1)求b.
(2)若a= ,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 , 的夾角為120°,且| |=4,| |=2.求:
(1)( ﹣2 )( + );
(2)|3 ﹣4 |.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】葫蘆島市交通局為了解機(jī)動(dòng)車駕駛員對(duì)交通法規(guī)的知曉情況,對(duì)渤海、豐樂(lè)、安寧、天正四個(gè)社區(qū)做分層抽樣調(diào)查.其中渤海社區(qū)有駕駛員96人.若在渤海、豐樂(lè)、安寧、天正四個(gè)社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則豐樂(lè)、安寧、天正三個(gè)社區(qū)駕駛員人數(shù)是多少( )
A.101
B.808
C.712
D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知向量 ,定點(diǎn) 的坐標(biāo)為 ,點(diǎn) 滿足 ,曲線 ,區(qū)域 ,曲線 與區(qū)域 的交集為兩段分離的曲線,則( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出8名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖所示,其中甲班學(xué)生成績(jī)的平均分是86,乙班學(xué)生成績(jī)的中位數(shù)是83,則 的值為( )

A.9
B.10
C.11
D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位實(shí)行休年假制度三年以來(lái),50名職工休年假的次數(shù)進(jìn)行的調(diào)查統(tǒng)計(jì)結(jié)果如表所示:
根據(jù)下表信息解答以下問(wèn)題:

休假次數(shù)

0

1

2

3

人數(shù)

5

10

20

15


(1)從該單位任選兩名職工,用η表示這兩人休年假次數(shù)之和,記“函數(shù)f(x)=x2﹣ηx﹣1在區(qū)間(4,6)上有且只有一個(gè)零點(diǎn)”為事件A,求事件A發(fā)生的概率P;
(2)從該單位任選兩名職工,用ξ表示這兩人休年假次數(shù)之差的絕對(duì)值,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)正三棱錐的零件,P是側(cè)面ACD上的一點(diǎn).過(guò)點(diǎn)P作一個(gè)與棱AB垂直的截面,怎樣畫法?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1的方程為3x+4y﹣12=0,
(1)求l2的方程,使得:①l2與l1平行,且過(guò)點(diǎn)(﹣1,3); ②l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4;
(2)直線l1與兩坐標(biāo)軸分別交于A、B 兩點(diǎn),求三角形OAB(O為坐標(biāo)原點(diǎn))內(nèi)切圓及外接圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案