已知H(-3,0),點(diǎn)Py軸上,點(diǎn)Qx軸的正半軸上,點(diǎn)M在直線PQ上,且滿足
⑴當(dāng)點(diǎn)Py軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;
⑵過(guò)點(diǎn)T(-1,0)作直線l與軌跡C交于A、B兩點(diǎn),若在x軸上存在一點(diǎn)E(x0,0),使得ABE是等邊三角形,求x0的值.
見(jiàn)解析
解(1)設(shè)點(diǎn)M的坐標(biāo)為(x,y),則由
,得。所以y2=4x 由點(diǎn)Qx軸的正半軸上,得x>0,所以,動(dòng)點(diǎn)M的軌跡C是以(0,0)為頂點(diǎn),以(1,0)為焦點(diǎn)的拋物線,除去原點(diǎn).
(2)設(shè)直線lyk(x+1),其中k≠0代入y2=4x,得k2x2+2(k2-2)xk2=0     ①
設(shè)Ax1y1),B(x2y2),則x1x2是方程①的兩個(gè)實(shí)數(shù)根,由韋達(dá)定理得
所以,線段AB的中點(diǎn)坐標(biāo)為,線段AB的垂直平分線方程為

 ,所以,點(diǎn)E的坐標(biāo)為。因?yàn)?i>△ABE為正三角形,所以,點(diǎn)E到直線AB的距離等于
   
所以,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題




查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線的一條準(zhǔn)線與拋物線y2=-6x的準(zhǔn)線重合,則該雙曲線的離心率是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)設(shè)橢圓的左焦點(diǎn)為F,上頂點(diǎn)為A,直線AF的傾斜角為(1)求橢圓的離心率;(2)設(shè)過(guò)點(diǎn)A且與AF垂直的直線與橢圓右準(zhǔn)線的交點(diǎn)為B,過(guò)A、B、F三點(diǎn)的圓M恰好與直線相切,求橢圓的方程及圓M的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)橢圓的左、右焦點(diǎn)分別為F1、F2,過(guò)F1的直線l與橢圓交于A、B兩點(diǎn).(Ⅰ)如果點(diǎn)A在圓c為橢圓的半焦距)上,且|F1A|=c,求橢圓的離心率;(Ⅱ)若函數(shù)的圖象,無(wú)論m為何值時(shí)恒過(guò)定點(diǎn)(b,a),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),且離心率且過(guò)橢圓右焦點(diǎn)的直線與橢圓C交于兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線,使得.若存在,求出直線的方程;若不存在,說(shuō)明理由.
(3)若AB是橢圓C經(jīng)過(guò)原點(diǎn)O的弦, MNAB,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若在曲線f(x,y)=0上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0的“自公切線”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
|x|+1=
4-y2

對(duì)應(yīng)的曲線中存在“自公切線”的有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)且有,則點(diǎn)的軌跡是(    )
A.橢圓B.雙曲線C.線段D.兩射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)O為坐標(biāo)原點(diǎn),點(diǎn),點(diǎn)軸正半軸上移動(dòng),表示的長(zhǎng),則△ABC中兩邊長(zhǎng)的比值的最大值為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案