已知函數(shù).
(1)若為的極值點,求實數(shù)的值;
(2)當時,方程有實根,求實數(shù)的最大值。
(1) (2) 當時,取得最大值0.
【解析】
試題分析:(1). 1分
因為為的極值點,所以. 2分
即,解得. 3分
又當時,,從而的極值點成立. 4分
(2)若時,方程可化為,.
問題轉(zhuǎn)化為在上有解,
即求函數(shù)的值域. 7分
以下給出兩種求函數(shù)值域的方法:
方法1:因為,令,
則 , 9分
所以當,從而上為增函數(shù),
當,從而上為減函數(shù), 10分
因此.
而,故,
因此當時,取得最大值0. 12分
方法2:因為,所以.
設(shè),則.
當時,,所以在上單調(diào)遞增;
當時,,所以在上單調(diào)遞減;
因為,故必有,又,
因此必存在實數(shù)使得,
,所以上單調(diào)遞減;
當,所以上單調(diào)遞增;
當上單調(diào)遞減;
又因為,
當,則,又.
因此當時,取得最大值0. 12分
考點:導(dǎo)數(shù)的運用
點評:主要是考查了運用導(dǎo)數(shù)來判定函數(shù)單調(diào)性以及函數(shù)的 極值問題,通過利用函數(shù)的單調(diào)性放縮法來證明不等式,進而得到最值,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知函數(shù).
(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;(3)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)已知函數(shù),
(1)若,求的單調(diào)區(qū)間;
(2)當時,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省岳陽市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為的極值點,求實數(shù)的值;
(2)若在上為增函數(shù),求實數(shù)的取值范圍;
(3)當時,方程有實根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)。
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
已知函數(shù).
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程有兩個不相等實根的概率;
(2)若是從區(qū)間中任取的一個數(shù),是從區(qū)間中任取的一個數(shù),求方程沒有實根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com