(滿分14分)已知動圓經(jīng)過點(diǎn)(1,0),且與直線相切,
(1)求動圓圓心的軌跡方程。
(2)在(1)中的曲線上求一點(diǎn),使這點(diǎn)到直線的距離最短。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)已知動圓過定點(diǎn),且和定直線相切.(Ⅰ)求動圓圓心的軌跡的方程;(Ⅱ)已知點(diǎn),過點(diǎn)作直線與曲線交于兩點(diǎn),若(為實(shí)數(shù)),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)已知動圓過定點(diǎn)F(2,0),且與直線相切。(1)求動圓圓心的軌跡C的方程;(2)若經(jīng)過定點(diǎn)F的動直線與軌跡C交于A、B兩點(diǎn),且這兩點(diǎn)的橫坐標(biāo)分別為.①求證:為定值;②試用表示線段AB的長度;③求線段AB長度的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年梅州市曾憲梓中學(xué)高二第二學(xué)期期末考試數(shù)學(xué)(文) 題型:解答題
(滿分14分)已知動圓經(jīng)過點(diǎn)(1,0),且與直線相切,
(1)求動圓圓心的軌跡方程。
(2)在(1)中的曲線上求一點(diǎn),使這點(diǎn)到直線的距離最短。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆北京市西城區(qū)高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
已知動圓P(圓心為點(diǎn)P)過定點(diǎn)A(1,0),且與直線相切。記動點(diǎn)P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點(diǎn)P的直線l與曲線C相切,且與直線相交于點(diǎn)Q。試研究:在x軸上是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com