【題目】如圖,長方形物體E在雨中沿面P(面積為S)的垂直方向作勻速移動(dòng),速度為,雨速沿E移動(dòng)方向的分速度為。E移動(dòng)時(shí)單位時(shí)間內(nèi)的淋雨量包括兩部分:(1)P或P的平行面(只有一個(gè)面淋雨)的淋雨量,假設(shè)其值與×S成正比,比例系數(shù)為;(2)其它面的淋雨量之和,其值為,記為E移動(dòng)過程中的總淋雨量,當(dāng)移動(dòng)距離d=100,面積S=時(shí)。
(1)寫出的表達(dá)式
(2)設(shè)0<v≤10,0<c≤5,試根據(jù)c的不同取值范圍,確定移動(dòng)速度,使總淋雨量最少。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)設(shè)a=2,函數(shù)f(x)的定義域?yàn)?/span>[3,63],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是線段AE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面MDF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 過橢圓: ()的短軸端點(diǎn), , 分別是圓與橢圓上任意兩點(diǎn),且線段長度的最大值為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)作圓的一條切線交橢圓于, 兩點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù), .
(Ⅰ)討論的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若對(duì)于任意,總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面為矩形,D為
的中點(diǎn),AC⊥平面BCC1B1.
(Ⅰ)證明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的長;
(2)求三棱錐C-DB1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,點(diǎn)的極坐標(biāo)為,圓以為圓心,4為半徑;又直線的極坐標(biāo)方程為。
(Ⅰ)求直線和圓的普通方程;
(Ⅱ)試判定直線和圓的位置關(guān)系.若相交,則求直線被圓截得的弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com