【題目】袋中裝有除顏色外形狀大小完全相同的6個(gè)小球,其中有4個(gè)編號(hào)為1,2, 3, 4的紅球,2個(gè)編號(hào)為A、B的黑球,現(xiàn)從中任取2個(gè)小球.;

(1)求所取2個(gè)小球都是紅球的概率;

(2)求所取的2個(gè)小球顏色不相同的概率.

【答案】(1) (2)

【解析】

1)利用列舉法求出任取2個(gè)小球的基本事件總數(shù),用表示“所取取2個(gè)小球都是紅球”,利用列舉法求出包含的基本事件個(gè)數(shù),由此能求出所取取2個(gè)小球都是紅球的概率.

2)用表示“所取的2個(gè)小球顏色不相同”,利用列舉法求出包含的基本事件個(gè)數(shù),由此能求出所取的2個(gè)小球顏色不相同的概率.

(1)由題意知,任取2個(gè)小球的基本事件有:

{1,2},{1,3},{1,4},{1,A},{1,B},{2,3}{2,4},{2A},

{2B},{3,4}{3,A},{3,B},{4,A},{4B},{A,B},共15個(gè),

M表示所取取2個(gè)小球都是紅球,

M包含的基本事件有:

{1,2},{1,4},{2,3},{2,4}{3,4},共6個(gè),

∴所取取2個(gè)小球都是紅球的概率:PM

(2)N表示所取的2個(gè)小球顏色不相同,

N包含的基本事件有:

{1,A}{1,B}{2,A},{2B}{3,A},{3,B},{4A},{4,B},共8個(gè),

∴所取的2個(gè)小球顏色不相同的概率:PN

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1) 證明:PB∥平面AEC

(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角所對(duì)的邊分別為.向量,且

(1)若,求角的值;

(2)求角的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且,當(dāng)時(shí),,則在區(qū)間內(nèi)關(guān)于的方程解得個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

(1)當(dāng)時(shí),求函數(shù)圖象在處的切線方程;

(2)若對(duì)任意,不等式恒成立,求的取值范圍;

(3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一布袋中裝有個(gè)小球,甲,乙兩個(gè)同學(xué)輪流且不放回的抓球,每次最少抓一個(gè)球,最多抓三個(gè)球,規(guī)定:由乙先抓,且誰抓到最后一個(gè)球誰贏,那么以下推斷中正確的是( )

A. ,則乙有必贏的策略B. ,則甲有必贏的策略

C. ,則甲有必贏的策略D. ,則乙有必贏的策略

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),過點(diǎn)作直線與拋物線交于不同兩點(diǎn),過軸的垂線分別與直線、交于點(diǎn)、,其中為坐標(biāo)原點(diǎn).

1)求拋物線的方程;

2)寫出拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

3)求證:為線段的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個(gè)結(jié)論:

①曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過;

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結(jié)論的序號(hào)是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),a為實(shí)數(shù),

求函數(shù)的單調(diào)區(qū)間;

若存在實(shí)數(shù)a,使得對(duì)任意恒成立,求實(shí)數(shù)m的取值范圍.提示:

查看答案和解析>>

同步練習(xí)冊(cè)答案