已知點(diǎn)A、B在拋物線數(shù)學(xué)公式,則直線AB恒過(guò)


  1. A.
    (2,0)
  2. B.
    (0,2)
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:設(shè)出直線AB的方程為y=kx+b,再設(shè)出點(diǎn)A和B的坐標(biāo),根據(jù)=0,根據(jù)平面向量的數(shù)量積的運(yùn)算法則得到一個(gè)關(guān)于橫坐標(biāo)之積和縱坐標(biāo)之積和的關(guān)系式,把A和B的坐標(biāo)代入拋物線后,兩式相乘得到兩點(diǎn)縱坐標(biāo)之積,將之積代入化簡(jiǎn)得到的關(guān)系中求出兩點(diǎn)橫坐標(biāo)之積,然后聯(lián)立直線AB與拋物線解析式,消去y后得到關(guān)于x的一元二次方程,利用韋達(dá)定理求出兩橫坐標(biāo)之積,兩者相等列出關(guān)于b的方程,求出方程的解即可得到b的值,由直線AB恒過(guò)(0,b),把b的值代入即可確定出點(diǎn)的坐標(biāo).
解答:設(shè)直線AB的方程為:y=kx+b,A(x1,y1),B(x2,y2),
根據(jù)=0,得到x1x2+y1y2=0,
將A和B代入拋物線方程得:y1=2x12,y2=2x22,則y1y2=4(x1x22
代入得:x1x2(4x1x2+1)=0,
由x1x2≠0,解得x1x2=-,
聯(lián)立直線AB與拋物線方程得:
消去y得:2x2-kx-b=0,
當(dāng)△=k2+8b≥0時(shí),x1x2=-
所以-=-,解得b=
則直線AB的方程為y=kx+,恒過(guò)(0,).
故選D
點(diǎn)評(píng):此題考查了平面向量的數(shù)量積的運(yùn)算,直線與雙曲線的綜合,以及韋達(dá)定理.熟練掌握平面向量的數(shù)量積運(yùn)算法則及韋達(dá)定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A、B在拋物線y=2x2上,O為原點(diǎn),
OA
OB
=0
,則直線AB恒過(guò)( 。
A、(2,0)
B、(0,2)
C、(0,
1
8
)
D、(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省溫州市十校聯(lián)合體高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知點(diǎn)A、B在拋物線,則直線AB恒過(guò)( )
A.(2,0)
B.(0,2)
C.
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省溫州十校聯(lián)合體高二第一學(xué)期期末聯(lián)考數(shù)學(xué)試卷(文科) 題型:選擇題

已知點(diǎn)A、B在拋物線,則直線AB恒過(guò) (  )

    A.(2,0)  B.(0,2)  C.     D.(

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A、B在拋物線,則直線AB恒過(guò)。  )

   A.(2,0)  B.(0,2)  C.    D.(

查看答案和解析>>

同步練習(xí)冊(cè)答案