已知復(fù)數(shù)3+i,-4-2i,-5i,6,
5
2
-3i.在復(fù)平面內(nèi)畫出這些復(fù)數(shù)與它們的共軛復(fù)數(shù)所對(duì)應(yīng)的向量,并求出它們的模.
考點(diǎn):復(fù)數(shù)的基本概念
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由復(fù)數(shù)的幾何意義和模長(zhǎng)公式分別作圖和求模長(zhǎng)可得.
解答: 解:黑色向量是原復(fù)數(shù)對(duì)應(yīng)的向量,紅色是其共軛復(fù)數(shù)所對(duì)應(yīng)的向量,
A、B、C、D、E分別是復(fù)數(shù)3+i,-4-2i,-5i,6,
5
2
-3i所對(duì)應(yīng)的向量,
A′、B′、C′、D′、E′分別是復(fù)數(shù)3+i,-4-2i,-5i,6,
5
2
-3i的共軛復(fù)數(shù)所對(duì)應(yīng)的向量,
由模長(zhǎng)公式可得模長(zhǎng)分別為
10
,2
5
,5,6,
61
2

點(diǎn)評(píng):本題考查復(fù)數(shù)的幾何意義以及共軛復(fù)數(shù),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為y=
1
2
x,其右焦點(diǎn)到該直線的距離等于
5
;點(diǎn)P是圓x2+y2=a2上的動(dòng)點(diǎn),作PD⊥x軸于D,且
DE
=
3
2
DP

(1)求點(diǎn)E的軌跡C2的方程
(2)已知P(0,-
1
2
),是否存在直線y=kx+m與軌跡C2,相交于不同的兩點(diǎn)M,N,且|PM|=|PN|,若存在,求實(shí)數(shù)m的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面內(nèi),設(shè)A、B、O為定點(diǎn),l為定直線,AB=2,O在l外,P為動(dòng)點(diǎn),則下列集合表示什么圖形?
(1){P||PA|=2|PB|};
(2){P||PA|+|PB|=2};
(3){P|||PA|-|PB||=2};
(4){P||PO|=dPl},其中dPl為點(diǎn)P到直線l的距離).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-|x-1|,x∈(-∞,2)
1
2
f(x-2),x∈[2,+∞)
,則函數(shù)xf(x)-1零點(diǎn)的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2,1),F(xiàn)是拋物線y2=4x的焦點(diǎn),M是拋物線上任意一點(diǎn),則當(dāng)|MF|+|MA|取得最小值時(shí),點(diǎn)M的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
1-sinα
1+cosα
+
1-cosα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求經(jīng)過(guò)點(diǎn)A(2,1)且與直線2x+ay-10=0垂直的直線l的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}共有奇數(shù)項(xiàng),所有奇數(shù)項(xiàng)和S=255,所有偶數(shù)項(xiàng)和S=-126,末項(xiàng)是192,則首項(xiàng)a1=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)m(x)=log4(4x+1),n(x)=kx(k∈R)
(1)當(dāng)x>0時(shí),F(xiàn)(x)=m(x),且F(x)為R上的奇函數(shù),求x<0時(shí)F(x)的表達(dá)式;
(2)若f(x)=m(x)+n(x)為偶函數(shù),求k的值;
(3)對(duì)(2)中的函數(shù)f(x),設(shè)g(x)=log4(2x-
4
3
a),若函數(shù)f(x)與g(x)的圖象有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案