設(shè)各項(xiàng)均不為0的數(shù)列{an}滿足an+1=
2
an(n≥1),Sn是其前n項(xiàng)和,若a2a4=2a5,則S4=( 。
A、4
2
B、8
2
C、3+3
2
D、6+6
2
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:易得數(shù)列{an}為公比q=
2
的等比數(shù)列,由已知式子可得a1=2,代入求和公式可得.
解答: 解:∵各項(xiàng)均不為0的數(shù)列{an}滿足an+1=
2
an(n≥1),
an+1
an
=
2
,即數(shù)列{an}為公比q=
2
的等比數(shù)列,
∵a2a4=2a5,∴a1q•a1q3=2a1q4
解得a1=2,或a1=0(矛盾,舍去)
∴S4=
a1(1-q4)
1-q
=
2(1-4)
1-
2
=6+6
2

故選:D
點(diǎn)評(píng):本題考查等比數(shù)列的前n項(xiàng)和,涉及等比數(shù)列的判定,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果數(shù)列{an}滿足a1=1,當(dāng)n為奇數(shù)時(shí),an+1=2an;當(dāng)n為偶數(shù)時(shí),an+1=an+2,則下列結(jié)論成立的是( 。
A、該數(shù)列的奇數(shù)項(xiàng)成等比數(shù)列,偶數(shù)項(xiàng)成等差數(shù)列
B、該數(shù)列的奇數(shù)項(xiàng)成等差數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列
C、該數(shù)列的奇數(shù)項(xiàng)各項(xiàng)分別加4后構(gòu)成等比數(shù)列
D、該數(shù)列的偶數(shù)項(xiàng)各項(xiàng)分別加4后構(gòu)成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)系式正確的是( 。
A、
2
∈Q
B、{a,b}={b,a}
C、{2}={x|x2=2x}
D、∅∈{2014}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2a+2-a=3,則8a+8-a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算(2
7
9
0.5+0.1-2+(2
10
27
 
2
3
-3π0+
37
48
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1≤x<7},C={x|x<a},全集為實(shí)數(shù)集R,且A∩C≠∅,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,AB=5,cos∠ABC=
1
5

(Ⅰ) 若BC=2,求sin∠ACB的值;
(Ⅱ) 若D是邊AC中點(diǎn),且BD=
7
2
,求邊AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lgx的定義域?yàn)?div id="d7ylk97" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1
x

(1)證明:f(x)在[1,+∞)上是增函數(shù);
(2)求f(x)在[2,4]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案