【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=﹣f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x﹣1,則( )
A.
B.
C.
D.
【答案】B
【解析】解:∵f(x+2)=﹣f(x), ∴f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),
∴函數(shù)f(x)是周期為4的周期函數(shù),
f(6)=f(2)=f(0)=0,f( )=f( )=﹣f(﹣ )=f( )= ﹣1,f(﹣7)=f(1)=1,
∴ ,
故選B.
【考點(diǎn)精析】利用函數(shù)奇偶性的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項(xiàng)和,則使得Sn達(dá)到最大值的n是( )
A.21
B.20
C.19
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) 的圖象如圖所示,為了得到g(x)=cos2x的圖象,則只需將f(x)的圖象( )
A.向右平移 個(gè)單位長(zhǎng)度
B.向右平移 個(gè)單位長(zhǎng)度
C.向左平移 個(gè)單位長(zhǎng)度
D.向左平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,BC⊥CD,點(diǎn)P在底面ABCD上的射影為A,BC=CD= AD=1,E為棱AD的中點(diǎn),M為棱PA的中點(diǎn).
(1)求證:BM∥平面PCD;
(2)若∠ADP=45°,求二面角A﹣PC﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a,b,c成等比數(shù)列,且a2﹣c2=ac﹣bc.
(Ⅰ)求∠A的大小;
(Ⅱ)若a= ,且sinA+sin(B﹣C)=2sin2C,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,已知點(diǎn)P(0, ),曲線C的參數(shù)方程為 (φ為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ= .
(Ⅰ)判斷點(diǎn)P與直線l的位置關(guān)系并說明理由;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A,B,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O為坐標(biāo)原點(diǎn),a>0,b>0,若A、B、C三點(diǎn)共線,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱ABC﹣A1B1C1的底面ABC是等邊三角形,且AA1⊥底面ABC,M為AA1的中點(diǎn),N在線段AB上,且AN=2NB,點(diǎn)P在CC1上.
(1)證明:平面BMC1⊥平面BCC1B1;
(2)當(dāng) 為何值時(shí),有PN∥平面BMC1?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com