【題目】已知函數(shù)在點(diǎn)處的切線與直線平行.

(1)求的值;

(2)若函數(shù)在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;

(3)求證:對(duì)任意,時(shí),恒成立.

【答案】(1) ;(2) ;(3)詳見解析.

【解析】試題分析:(1)對(duì)函數(shù)求導(dǎo),由求出a值;(2) 由(Ⅰ),根據(jù)導(dǎo)函數(shù)大于0和小于0可求出函數(shù)的單調(diào)區(qū)間,進(jìn)而得出函數(shù)的極值, 函數(shù)在區(qū)間上不單調(diào),即極值點(diǎn)在區(qū)間內(nèi),解出m范圍即可;(3)對(duì)不等式化簡(jiǎn),分離參數(shù)b和變量x,可得時(shí),原不等式等價(jià)于恒成立,構(gòu)造,求導(dǎo)判斷單調(diào)性求出最值,即可證得命題成立.

試題解析:

(Ⅰ)解:因?yàn)?/span>,所以,根據(jù)題意,

所以,所以

(Ⅱ)解:由(Ⅰ),定義域?yàn)?/span>,

當(dāng)時(shí),,上為增函數(shù),

當(dāng)時(shí),,上為減函數(shù),

所以函數(shù)處取得極值,又函數(shù)在區(qū)間上不單調(diào),

所以,所以

(Ⅲ)證明:當(dāng)時(shí),,

所以時(shí),原不等式等價(jià)于恒成立,

,則

,則上恒成立,

所以上是增函數(shù),,所以

所以上是增函數(shù),所以,即原不等式恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家舉行大型的促銷活動(dòng),經(jīng)測(cè)算某產(chǎn)品當(dāng)促銷費(fèi)用為萬(wàn)元時(shí),銷售量萬(wàn)件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬(wàn)件還需投入成本萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為萬(wàn)元/萬(wàn)件.

(1)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷費(fèi)用萬(wàn)元的函數(shù);

2)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù) ,看下面四個(gè)結(jié)論( ) ①f(x)是奇函數(shù);②當(dāng)x>2007時(shí), 恒成立;③f(x)的最大值是 ;④f(x)的最小值是 .其中正確結(jié)論的個(gè)數(shù)為:
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過(guò)A(3,2)、B(1,6),且圓心在直線y=2x上.
(1)求圓C的方程.
(2)若直線l經(jīng)過(guò)點(diǎn)P(﹣1,3)與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),我國(guó)許多省市霧霾天氣頻發(fā),為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),某市面向全市征召名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織,現(xiàn)把該組織的成員按年齡分成組第,第,第,第,第,得到的頻率分布直方圖如圖所示,已知第組有人.

(1)求該組織的人數(shù);

(2)若在第組中用分層抽樣的方法抽取名志愿者參加某社區(qū)的宣傳活動(dòng),應(yīng)從第組各抽取多少名志愿者?

(3)在(2)的條件下,該組織決定在這名志愿者中隨機(jī)抽取名志愿者介紹宣傳經(jīng)驗(yàn),求第組至少有名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】城市公交車的數(shù)量太多容易造成資源的浪費(fèi),太少又難以滿足乘客的需求,為此,某市公交公司在某站臺(tái)的60名候車的乘客中隨機(jī)抽取15人,將他們的候車時(shí)間作為樣本分成5組,如下表所示:

組別

候車時(shí)間(分鐘)

人數(shù)

2

6

4

2

1

(1)估計(jì)這15名乘客的平均候車時(shí)間;

(2)估計(jì)這60 名乘客中候車時(shí)間少于10 分鐘的人數(shù);

(3)若從上表第三、四組的6人中選2人作進(jìn)一步的問(wèn)卷調(diào)查,求抽到的2人恰好來(lái)自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= .(x>0)
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)若當(dāng)x>0時(shí),f(x)> 恒成立,求正整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C:x2+y2+4x﹣2y+m=0與直線x﹣ y+ ﹣2=0相切.
(1)求圓C的方程;
(2)若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對(duì)稱,且|MN|=2 ,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC A1B1C1中,側(cè)棱垂直于底面,ABBC ,

EF分別是A1C1,BC的中點(diǎn).

(Ⅰ)求證:C1F∥平面ABE;

(Ⅱ)求三棱錐E-ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案