(本小題滿分14分)
已知函數(shù)
(Ⅰ)當(dāng)時(shí),如果函數(shù)僅有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),試比較與1的大。
(Ⅲ)求證:
(1);
(2)①當(dāng)時(shí),,即;
②當(dāng)時(shí),,即;
③當(dāng)時(shí),,即
(3)見解析.
(I)本小題的實(shí)質(zhì)是利用導(dǎo)數(shù)研究函數(shù)f(x)的單調(diào)性極值,結(jié)合草圖,確定出直線y=k與函數(shù)y=f(x)的圖像有一個(gè)公共點(diǎn)時(shí),確定k的取值范圍.
(II)當(dāng)a=2時(shí),可以采用作差法比較f(x)與1的大小,然后構(gòu)造函數(shù),研究其單調(diào)區(qū)間最值,從而判斷它們之間的大小關(guān)系.
(III)解決本小題最佳途徑是利用(2)的結(jié)論,當(dāng)時(shí),,即
,則有, 然后解本題的另一個(gè)關(guān)鍵點(diǎn)判斷出,從而證明出.
另外也可以考慮數(shù)學(xué)歸納法.
解:(Ⅰ)當(dāng)時(shí),,定義域是
, 令,得. …2分
當(dāng)時(shí),,當(dāng)時(shí),,
函數(shù)、上單調(diào)遞增,在上單調(diào)遞減. ……………4分
的極大值是,極小值是
當(dāng)時(shí),;當(dāng)時(shí),,
當(dāng)僅有一個(gè)零點(diǎn)時(shí),的取值范圍是.………5分
(Ⅱ)當(dāng)時(shí),,定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221220897533.png" style="vertical-align:middle;" />.
,
,
上是增函數(shù).             ……………………7分
①當(dāng)時(shí),,即;
②當(dāng)時(shí),,即;
③當(dāng)時(shí),,即. …………………………………9分
(Ⅲ)(法一)根據(jù)(2)的結(jié)論,當(dāng)時(shí),,即
,則有,   . ……12分

.               ………………………14分
(法二)當(dāng)時(shí),
,,即時(shí)命題成立.  …………………10分
設(shè)當(dāng)時(shí),命題成立,即
時(shí),
根據(jù)(Ⅱ)的結(jié)論,當(dāng)時(shí),,即
,則有,
則有,即時(shí)命題也成立.………13分
因此,由數(shù)學(xué)歸納法可知不等式成立.                ………………………14分
(法三)如圖,根據(jù)定積分的定義,

.……11分



. ………………………………12分
,
,

.               …………………………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知函數(shù)
(Ⅰ)若函數(shù)處取到極值,求的值.
(Ⅱ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為,若內(nèi)恒成立,則稱為函數(shù)的的“HOLD點(diǎn)”.當(dāng)時(shí),試問函數(shù)是否存在“HOLD點(diǎn)”,若存在,請(qǐng)至少求出一個(gè)“HOLD點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處取得極值,且
(1) 求函數(shù)的解析式;   (2) 若在區(qū)間上單調(diào)遞增,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)函數(shù),過曲線上的點(diǎn)的切線斜率為3.
(1)若時(shí)有極值,求f (x)的表達(dá)式;
(2)在(1)的條件下,求上最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)k的取值范圍;
(3)證明:
上恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)已知函數(shù)
(I)討論的單調(diào)性;
(II)設(shè),證明:當(dāng)時(shí),
(III)若函數(shù)的圖像與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0,
證明:x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;   (II)若關(guān)于的不等式對(duì)一切都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在R上時(shí)減函數(shù),則的取值范圍為:(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)上為減函數(shù),則的取值范圍是            .

查看答案和解析>>

同步練習(xí)冊(cè)答案