精英家教網 > 高中數學 > 題目詳情
已知圓的方程為x2+y2-6x-8y=0,設圓中過點(2,5)的最長弦與最短弦為分別為AB、CD,則直線AB與CD的斜率之和為( )
A.0
B.-1
C.1
D.-2
【答案】分析:把圓的方程化為標準方程,找出圓心坐標,由(2,5)在圓內,故過此點最長的弦為直徑,最短弦為與這條直徑垂直的弦,所以由圓心坐標和(2,5)求出直線AB的斜率,再根據兩直線垂直時斜率的乘積為-1求出直線CD的斜率,進而求出兩直線的斜率和.
解答:解:把圓的方程化為標準方程得:(x-3)2+(y-4)2=25,
∴圓心坐標為(3,4),
∴過(2,5)的最長弦AB所在直線的斜率為=-1,
又最長弦所在的直線與最短弦所在的直線垂直,
∴過(2,5)最短弦CD所在的直線斜率為1,
則直線AB與CD的斜率之和為-1+1=0.
故選A
點評:此題考查了直線與圓的位置關系,涉及的知識有:圓的標準方程,垂徑定理,直線斜率的計算方法,以及兩直線垂直時斜率滿足的關系,其中得出過點(2,5)最長的弦為直徑,最短弦為與這條直徑垂直的弦是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓的方程為x2+y2-6x-8y=0,設該圓過點(3,5)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為(  )
A、10
6
B、20
6
C、30
6
D、40
6

查看答案和解析>>

科目:高中數學 來源: 題型:

3、已知圓的方程為x2+y2-2x+6y+8=0,那么該圓的一條直徑所在直線的方程為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓的方程為x2+y2-6x-8y=0.設該圓過點(3,5)的兩條弦分別為AC和BD,且AC⊥BD.則四邊形ABCD的面積最大值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓的方程為x2+y2=4,過點M(2,4)作圓的兩條切線,切點分別為A1、A2,直線A1A2恰好經過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點和上頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線x=-1與橢圓相交于A、B兩點,P是橢圓上異于A、B的任意一點,直線AP、BP分別交定直線l:x=-4于兩點Q、R,求證
OQ
OR
為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓的方程為x2+y2+2x-4y-4=0,求經過點(4,-1)的該圓的切線方程.

查看答案和解析>>

同步練習冊答案