【題目】已知三棱柱中,三個(gè)側(cè)面均為矩形,底面為等腰直角三角形, ,點(diǎn)為棱的中點(diǎn),點(diǎn)在棱上運(yùn)動(dòng).
(1)求證 ;
(2)當(dāng)點(diǎn)運(yùn)動(dòng)到某一位置時(shí),恰好使二面角的平面角的余弦值為,求點(diǎn)到平面的距離;
(3)在(2)的條件下,試確定線段上是否存在一點(diǎn),使得平面?若存在,確定其位置;若不存在,說明理由.
【答案】(1)見解析;(2);(3)存在,為中點(diǎn).
【解析】
(1)以CB為x軸,CA為y軸,CC1為z軸,C為原點(diǎn)建立坐標(biāo)系,設(shè)E(m,0,2),要證A1C⊥AE,可證,只需證明,利用向量的數(shù)量積運(yùn)算即可證明;(2)分別求出平面EA1D、平面A1DB的一個(gè)法向量,由兩法向量夾角余弦值的絕對(duì)值等于,解得m值,由此可得答案;(3)在(2)的條件下,設(shè)F(x,y,0),可知與平面A1DB的一個(gè)法向量平行,由此可求出點(diǎn)F坐標(biāo),進(jìn)而求出||,即得答案.
(1)以CB為x軸,CA為y軸,CC1為z軸,C為原點(diǎn)建立坐標(biāo)系,設(shè)E(m,0,2),
C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),
=(0,﹣2,﹣2),=(m,﹣2,2),
因?yàn)?/span>=0+(﹣2)×(﹣2)﹣2×2=0,
所以⊥,即A1C⊥AE;
(2)=(m,0,1),=(0,2,1),
設(shè)=(x,y,z)為平面EA1D的一個(gè)法向量,
則 即 ,取=(2,m,﹣2m),
=(2,0,﹣1),設(shè)=(x,y,z)為平面A1DB的一個(gè)法向量,
則,即,取=(1,﹣1,2),
由二面角E﹣A1D﹣B的平面角的余弦值為 ,得 ||=,解得m=1,
平面A1DB的一個(gè)法向量=(1,﹣1,2),根據(jù)點(diǎn)E到面的距離為:.
(3)由(2)知E(1,0,2),且=(1,﹣1,2)為平面A1DB的一個(gè)法向量,
設(shè)F(x,y,0),則=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,
所以=(﹣1,1,﹣2),= =,
故EF的長度為,此時(shí)點(diǎn)F(0,1,0).存在F點(diǎn)為AC中點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長為2的正三角形,頂點(diǎn)在上的射影為點(diǎn),且, , .
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列中, , .
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與直線y=x-2相切,設(shè)橢圓的上頂點(diǎn)為M, 是橢圓的左右焦點(diǎn),且⊿M為等腰直角三角形。(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線l過點(diǎn)N(0,-)交橢圓于A,B兩點(diǎn),直線MA、MB分別與橢圓的短軸為直徑的圓交于S,T兩點(diǎn),求證:O、S、T三點(diǎn)共線。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)-mx(mR)。(1)若m>0,討論f(x)的單調(diào)性;(2)令g(x)=f(x-1)+(2m+1)x+n,若g(x)有兩個(gè)零點(diǎn),,求證: <
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=,弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長,“矢”指半徑長與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說法不正確的是( )
A. “弦”米,“矢”米
B. 按照經(jīng)驗(yàn)公式計(jì)算所得弧田面積()平方米
C. 按照弓形的面積計(jì)算實(shí)際面積為()平方米
D. 按照經(jīng)驗(yàn)公式計(jì)算所得弧田面積比實(shí)際面積少算了大約0.9平方米(參考數(shù)據(jù) )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極值,對(duì), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中),(其中為自然對(duì)數(shù)的底數(shù)).
(1)若曲線在處的切線與直線垂直,求的單調(diào)區(qū)間和極值;
(2)若對(duì)任意,總存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為常數(shù),函數(shù).
(1)當(dāng)時(shí),求關(guān)于的不等式的解集;
(2)當(dāng)時(shí),若函數(shù)在上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)對(duì)于給定的,且,,證明:關(guān)于的方程在區(qū)間內(nèi)有一個(gè)實(shí)數(shù)根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com