在等比數(shù)列中,已知,公比,等差數(shù)列滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,求數(shù)列的前2n項(xiàng)和.
(Ⅰ)(Ⅱ)

試題分析:(Ⅰ) 設(shè)等比數(shù)列的公比為,等差數(shù)列的公差為.
由已知得:, 

(舍去)
所以, 此時(shí)  
所以,,        6分                 
(2) 由題意

當(dāng)n為偶數(shù)時(shí):

當(dāng)n為奇數(shù)時(shí):

所以
點(diǎn)評(píng):等差數(shù)列通項(xiàng),等比數(shù)列通項(xiàng),求通項(xiàng)公式主要需要找到首項(xiàng)公差公比,第二問(wèn)數(shù)列的通項(xiàng)由關(guān)于n的一次式與指數(shù)式相加構(gòu)成的,因此采用分組求和法,這種方法以及裂項(xiàng)相消,錯(cuò)位相減等都是常用的求和方法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列滿足,則的前10項(xiàng)和等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是首項(xiàng)為的等比數(shù)列,的前項(xiàng)和,且.則的前項(xiàng)和為.
A.B. C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是公比為正數(shù)的等比數(shù)列,若,,則=(   )
A.255B.256C.127D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,若,則的通項(xiàng)       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對(duì)于任意的,滿足關(guān)系式
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對(duì)于任意的正整數(shù)n,總有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等比數(shù)列中,若,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等比數(shù)列的首項(xiàng),公比,數(shù)列項(xiàng)的積記為.
(1)求使得取得最大值時(shí)的值;
(2)證明中的任意相鄰三項(xiàng)按從小到大排列,總可以使其成等差數(shù)列,如果所有這些等差數(shù)列的公差按從小到大的順序依次設(shè)為,證明:數(shù)列為等比數(shù)列.
(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等比數(shù)列中, ,則的值是(   )
A.14B.18 C.16D.20

查看答案和解析>>

同步練習(xí)冊(cè)答案