下面是用UNTIL語句設(shè)計(jì)的計(jì)算1×3×5×…×99的一個(gè)算法程序.

(Ⅰ)請將其補(bǔ)充完整;①
 
,②
 

(Ⅱ)繪制出該程序?qū)?yīng)的流程圖.
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:(Ⅰ)根據(jù)算法程序,即可得到結(jié)論,
(Ⅱ)根據(jù)程序,即可得到對應(yīng)的流程圖.
解答: 解:(Ⅰ)補(bǔ)充如下:
①i=i+2
②i>99   (或i>100,i≥100,i≥101)
(Ⅱ)流程圖如右圖:
故答案為:i=i+2;i>99.
點(diǎn)評:本題主要考查程序框圖的識別和應(yīng)用,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

長方體ABCD-A1B1C1D1,AB=2,AD=2,AA1=
6
,則點(diǎn)D到平面ACD1的距離是( 。
A、
1
2
B、
3
2
C、
6
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖示,在底面為直角梯形的四棱椎P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足
Sn
an-2
=
a
a-2
 (a是常數(shù)且a>O,a≠2),bn=
2Sn
an
+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}為等比數(shù)列,求{bn}的通項(xiàng)公式;
(3)在(2)的條件下,記cn=log3b1+log3b2+…+log3bn,?n∈N*是否存在正整數(shù)m,使
1
c1
+
1
c2
+…+
1
cn
m
3
都成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex+sinx,g(x)=x-2;
(1)求證:函數(shù)y=f(x)在[0,+∞)上單調(diào)遞增;
(2)設(shè)P(x1,f(x1)),Q(x2,g(x2))(x1≥0,x2>0),若直線PQ∥x軸,求P,Q兩點(diǎn)間的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC中,PA⊥AB,PA⊥AC,∠ACB=90°(如圖)
(1)求證:PA⊥BC;
(2)若PA=AC=BC=1,求點(diǎn)C到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋中裝有形狀大小完全相同的球9個(gè),其中紅球3個(gè),白球6個(gè),每次隨機(jī)取1個(gè),直到取出3次紅球即停止.
(Ⅰ)從袋中不放回地取球,求恰好取4次停止的概率P1;
(Ⅱ)從袋中有放回地取球.
①求恰好取5次停止的概率P2;
②記5次之內(nèi)(含5次)取到紅球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知an=(
1
3
n,把數(shù)列{an}的各項(xiàng)排列成如下的三角形狀,記A(m,n)表示第m行的第n個(gè)數(shù),則A(10,12)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓O的半徑為3,P是圓O外一點(diǎn),PO=5,PC是圓O的切線,C是切點(diǎn),則PC=
 

查看答案和解析>>

同步練習(xí)冊答案