以下五個關(guān)于圓錐曲線的命題中:
①雙曲線
與橢圓
有相同的焦點;
②方程
的兩根可分別作為橢圓和雙曲線的離心率;
③設(shè)A、B為兩個定點,
為常數(shù),若
,則動點P的軌跡為雙曲線;
④過拋物線
的焦點作直線與拋物線相交于A、B兩點,則使它們的橫坐標(biāo)之和
等于5的直線有且只有兩條。
⑤過定圓C上一點A作圓的動弦AB,O為原點,若
,則動點P的
軌跡為橢圓
其中真命題的序號為
(寫出所有真命題的序號)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的兩焦點
和短軸的兩端點
正好是一正方形的四個頂點,且焦點到橢圓上一點的最近距離為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上任一點,MN 是圓C:
的任一條直徑,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知傾斜角為
的直線
過橢圓
的右焦點,則
被橢圓所截的弦長
是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知圓的方程
,過
作直線
與圓交于點
,且
關(guān)于直線
對稱,則直線
的斜率等于
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題共12分)
在直角坐標(biāo)系
中,動點P到兩定點
,
的距離之和等于4,設(shè)動點P的軌跡為
,過點
的直線與
交于A,B兩點.
(1)寫出
的方程;
(2)設(shè)d為A、B兩點間的距離,d是否存在最大值、最小值;若存在,求出d的最大值、最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線
與雙曲線
。某學(xué)生做了如下變形:由方程組
,消去
后得到形如
的方程。當(dāng)
時,該方程有一解,當(dāng)
時,
恒成立。假設(shè)該學(xué)生的演算過程是正確的,則實數(shù)m的取值范圍是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
的左焦點為
,左準(zhǔn)線為
,點
線段
交橢圓
于點
,若
,則
_____________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
的焦點為
,過F
2垂直于x軸的直線交橢圓于一點P,那么|PF
1|的值是
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知圓的方程是
,經(jīng)過圓上一點
的切線方程為
,類比上述方法可以得到橢圓
類似的性質(zhì)為________。
查看答案和解析>>