如圖,有一邊長為2米的正方形鋼板缺損一角(圖中的陰影部分),邊緣線是以直線為對稱軸,以線段的中點為頂點的拋物線的一部分.工人師傅要將缺損一角切割下來,使剩余的部分成為一個直角梯形.

(Ⅰ)請建立適當?shù)闹苯亲鴺讼担箨幱安糠值倪吘壘的方程;
(Ⅱ)如何畫出切割路徑,使得剩余部分即直角梯形的面積最大?
并求其最大值.

(I) .(Ⅱ)當時,可使剩余的直角梯形的面積最大,其最大值為.  

解析試題分析:(I)以為原點,直線軸,建立如圖所示的直角坐標系,

依題意
可設拋物線弧的方程為
∵點的坐標為, ∴,
故邊緣線的方程為.
(Ⅱ)要使梯形的面積最大,則所在的直線必與拋物線弧相切,設切點坐標為,   ∵,
∴直線的的方程可表示為,即 , 由此可求得,.
,   ,
設梯形的面積為,則
. ∴當時,
的最大值為. 此時.
答:當時,可使剩余的直角梯形的面積最大,其最大值為.  
考點:本題主要考查拋物線在實際問題中的應用以及二次函數(shù)的圖象和性質(zhì)。
點評:解應用題常用的方法是依據(jù)題意建立等量關系,構(gòu)造數(shù)學模型利用函數(shù)的性質(zhì)進行求解,而有些應用題有明顯的幾何意義,可以考慮利用解析法根據(jù)題意建立適當?shù)淖鴺讼担瑯?gòu)造曲線方程,利用曲線的性質(zhì)進行求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

計算下列定積分(本小題滿分12分)
(1)            (2)
(3)                (4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)試用含的代數(shù)式表示;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設函數(shù)處取得極值,記點,證明:線段與曲線存在異于、的公共點;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù)
(1)判斷的單調(diào)性;
(2)記若函數(shù)有兩個零點,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)設函數(shù).
⑴ 求的極值點;
⑵ 若關于的方程有3個不同實根,求實數(shù)a的取值范圍.
⑶ 已知當恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知函數(shù)上是單調(diào)遞增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),當時,;當時,.
(1)求在[0,1]內(nèi)的值域;
(2)為何值時,不等式在[1,4]上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)設函數(shù).
(1)當時,求的極值;
(2)當時,求的單調(diào)區(qū)間;
(3)若對任意,恒有成立,求的取值范圍

查看答案和解析>>

同步練習冊答案