【題目】甲、乙兩艘輪船都要在某個泊位?6小時,假定它們在一晝夜的時間段中隨機到達,則這兩艘船中至少有一艘在?坎次粫r必須等待的概率是 .
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=a2x+ (a,b,c為常數(shù),且a>0,c>0).
(1)當a=1,b=0時,求證:|f(x)|≥2c;
(2)當b=1時,如果對任意的x>1都有f(x)>a恒成立,求證:a+2c>1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園,種植桃樹,已知角A為120°.現(xiàn)在邊界AP,AQ處建圍墻,PQ處圍柵欄.
(1)若∠APQ=15°,AP與AQ兩處圍墻長度和為100( +1)米,求柵欄PQ的長;
(2)已知AB,AC的長度均大于200米,若水果園APQ面積為2500 平方米,問AP,AQ長各為多少時,可使三角形APQ周長最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}是有窮數(shù)列,且a1∈R,公差d=2,記{an}的所有項之和為S,若a12+S≤96,則數(shù)列{an}至多有項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知直四棱柱ABCD﹣A1B1C1D1的底面ABCD為菱形,且∠BCD=60°,P為AD1的中點,Q為BC的中點
(1)求證:PQ∥平面D1DCC1;
(2)求證:DQ⊥平面B1BCC1 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記等比數(shù)列{an}前n項和為Sn , 已知a1+a3=30,3S1 , 2S2 , S3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=3,bn+1﹣3bn=3an , 求數(shù)列{bn}的前n項和Bn;
(3)刪除數(shù)列{an}中的第3項,第6項,第9項,…,第3n項,余下的項按原來的順序組成一個新數(shù)列,記為{cn},{cn}的前n項和為Tn , 若對任意n∈N* , 都有 >a,試求實數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C的頂點在原點,焦點在x軸上,且拋物線上有一點P(4,m)到焦點的距離為6.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若拋物線C與直線y=kx﹣2相交于不同的兩點A、B,且AB中點橫坐標為2,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)據(jù)x1 , x2 , x3 , …,x100是杭州市100個普通職工的2016年10月份的收入(均不超過2萬元),設這100個數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上馬云2016年10月份的收入x101(約100億元),則相對于x、y、z,這101個月收入數(shù)據(jù)( )
A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分16分)已知數(shù)列(, )滿足, 其中, .
(1)當時,求關(guān)于的表達式,并求的取值范圍;
(2)設集合.
①若, ,求證: ;
②是否存在實數(shù), ,使, , 都屬于?若存在,請求出實數(shù), ;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com