△ABC中,若cos(2B+C)+2sinAsinB=0,則△ABC中一定是


  1. A.
    銳角三角形
  2. B.
    鈍角三角形
  3. C.
    直角三角形
  4. D.
    等腰三角形
C
分析:條件即cos(B+B+C)+2sinAsinB=0,利用兩角和的余弦公式、誘導公式化簡可得cos(A+B)=0,故A+B=,C=,
從而得到△ABC形狀一定是直角三角形.
解答:∵cos(2B+C)+2sinAsinB=0,即 cos(B+B+C)+2sinAsinB=0.
∴cosBcos(B+C)-sinBsin(B+C)+2sinAsinB=0,
即 cosBcos(π-A)-sinBsin(π-A)+2sinAsinB=0.
∴-cosBcosA-sinBsinA+2sinAsinB=0,即-cosBcosA+sinBsinA=0.
即-cos(A+B)=0,cos(A+B)=0.
∴A+B=,∴C=,故△ABC形狀一定是直角三角形.
故選 C.
點評:本題考查兩角和的余弦公式、誘導公式的應用,求得cos(A+B)=0,是解題的關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

△ABC中,若cos(B-A)-2sinAsinB>0,則△ABC的形狀是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若cos(
π
4
+A)=
5
13
,則cos2A的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•南通模擬)△ABC中,若cos(2B+C)+2sinAsinB=0,則△ABC中一定是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若cos(
π
2
-A):sinB:cos(
2
+C)=3:2:4
,則cosC的值為
-
1
4
-
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函數(shù)f(x)=
m
n
,且f(x)圖象上一個最高點為P(
π
12
,2)
,與P最近的一個最低點的坐標為(
12
,-2)

(1)求函數(shù)f(x)的解析式;
(2)設a為常數(shù),判斷方程f(x)=a在區(qū)間[0,
π
2
]
上的解的個數(shù);
(3)在銳角△ABC中,若cos(
π
3
-B)=1
,求f(A)的取值范圍.

查看答案和解析>>

同步練習冊答案