已知α,β均為銳角,且α+β=
π4
,則(1+tanα)(1+tanβ)=
 
分析:先根據(jù)α,β均為銳角且α+β=
π
4
求出tanα、tanβ的關(guān)系式,再將(1+tanα)(1+tanβ)展開即可得到答案.
解答:解:∵α,β均為銳角,且α+β=
π
4

∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=1,
∴tanα+tanβ=1-tanαtanβ,∴tanα+tanβ+tanαtanβ=1
(1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ=1+1=2
故答案為:2
點(diǎn)評(píng):本題主要考查兩角和的正切公式.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)學(xué)公式,數(shù)學(xué)公式,α,β均為銳角.
(1)求tanα;      (2)求cos(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)學(xué)公式,數(shù)學(xué)公式,α,β均為銳角
(Ⅰ)求tan(α+β)的值;
(Ⅱ)求α+2β的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=4,cos(α+β)=,α,β均為銳角,求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

如圖,點(diǎn)B在以PA為直徑的圓周上,點(diǎn)C在線段AB上,已知,設(shè),均為銳角.

(1)求;

(2)求兩條向量的數(shù)量積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省2010屆三校四模聯(lián)考 題型:解答題

 

如圖,點(diǎn)B在以PA為直徑的圓周上,點(diǎn)C在線段AB上,已知,設(shè),均為銳角.

(1)求;

(2)求兩條向量的數(shù)量積的值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案