【題目】《中國好聲音( )》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012年7月13日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團(tuán)隊中接受指導(dǎo)訓(xùn)練.已知某期《中國好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:
導(dǎo)師轉(zhuǎn)身人數(shù)(人) | 4 | 3 | 2 | 1 |
獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人) | 1 | 2 | 2 | 1 |
現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.
(1)求選出的兩人導(dǎo)師為其轉(zhuǎn)身的人數(shù)和為4的概率;
(2)記選出的2人導(dǎo)師為其轉(zhuǎn)身的人數(shù)之和為,求的分布列及數(shù)學(xué)期望.
【答案】(1);(2)分布列見解析,.
【解析】
試題分析:(1)總的基本事件有種,和為的是或者,故符合題意的有種,故概率為;(2)通過分析可知,的所有可能取值為,按超幾何分布的計算方法,計算分布列和數(shù)學(xué)期望.
試題解析:
(1)設(shè)6位選手中,有4位導(dǎo)師為其轉(zhuǎn)身,,有3為導(dǎo)師為其轉(zhuǎn)身,,有2為導(dǎo)師為其轉(zhuǎn)身,只有1位導(dǎo)師為其轉(zhuǎn)身.
從6人中隨機抽取兩人有種情況,
其中選出的2人導(dǎo)師為其轉(zhuǎn)身人數(shù)和為4的有種,
故所求概率為.
(2)的所有可能取值為3,4,5,6,7.
;
;
;
;
.
所以的分布列為
3 | 4 | 5 | 6 | 7 | |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(A)設(shè)函數(shù), .
(1)證明:函數(shù)在上為增函數(shù);
(2)若方程有且只有兩個不同的實數(shù)根,求實數(shù)的值.
(B)已知函數(shù).
(1)求函數(shù)的最小值;
(2)若存在唯一實數(shù),使得成立,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)l,m是兩條不同的直線,α是一個平面,則下列命題正確的是( )
A. 若l⊥m,mα,則l⊥α
B. 若l⊥α,l∥m,則m⊥α
C. 若l∥α,mα,則l∥m
D. 若l∥α,m∥α,則l∥m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過點(平面直角坐標(biāo)系中點)作直線交曲線于, 兩點,若恰好為線段的三等分點,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個關(guān)于數(shù)列命題:
(1)若是等差數(shù)列,則三點、、共線;
(2)若是等比數(shù)列,則、、 ()也是等比數(shù)列;
(3)等比數(shù)列的前n項和為,若對任意的,點均在函數(shù) (, 均為常數(shù))的圖象上,則r的值為.
(4)對于數(shù)列,定義數(shù)列為數(shù)列的“差數(shù)列”,若, 的“差數(shù)列”的通項為,則數(shù)列的前項和
其中正確命題的個數(shù)是 ( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),若以直角坐標(biāo)系的點為極點,方向為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為.
(1)求直線的傾斜角和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點,設(shè)點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com