設(shè)a>0,函數(shù)數(shù)學(xué)公式
(1)若曲線y=f(x)在(2,f(2))處切線的斜率為-1,求a的值;
(2)求函數(shù)f(x)的極值點(diǎn).

解:(1)由已知x>0

曲線y=f(x)在(2,f(2))處切線的斜率為-1,
所以f'(2)=-1即,解得a=4
(2)
①當(dāng)0<a<1時,
當(dāng)x∈(0,a)時,f'(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)x∈(a,1)時,f'(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時,f'(x)>0,函數(shù)f(x)單調(diào)遞增.
此時x=a是f(x)的極大值點(diǎn),x=1是f(x)的極小值點(diǎn).
②當(dāng)a=1時,
當(dāng)x∈(0,1)時,f'(x)>0,
當(dāng)x=1時,f'(x)=0,
當(dāng)∈(1,+∞)時,f'(x)>0
所以函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,此時f(x)沒有極值點(diǎn).
③當(dāng)a>1時,當(dāng)x∈(0,1)時,f'(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)x∈(a,1)時,f'(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(a,+∞)時,f'(x)>0,函數(shù)f(x)單調(diào)遞增.
此時x=1是f(x)的極大值點(diǎn),x=a是f(x)的極小值點(diǎn).
綜上,當(dāng)0<a<1時,x=a是f(x)的極大值點(diǎn),x=1是f(x)的極小值點(diǎn);
當(dāng)a=1時,f(x)沒有極值點(diǎn);
當(dāng)a>1時,x=1是f(x)的極大值點(diǎn),x=1是f(x)的極小值點(diǎn)
分析:(1)由對數(shù)函數(shù)的定義得到函數(shù)的定義域?yàn)閤大于0,求出f′(x),根據(jù)曲線在(2,f(2))處切線的斜率為-1,得到f'(2)=-1,代入導(dǎo)函數(shù)得到關(guān)于a的方程,求出a的解即可;
(2)令f′(x)=0求出x的值為1和a,然后分0<a<1,a=1和a>1三個區(qū)間在定義域內(nèi)利用x的范圍討論導(dǎo)函數(shù)的正負(fù)即可得到函數(shù)的增減區(qū)間,利用函數(shù)的增減性得到函數(shù)的極值即可.
點(diǎn)評:此題是一道綜合題,要求學(xué)生會求曲線上過某點(diǎn)的切線方程的斜率,會利用導(dǎo)數(shù)研究函數(shù)的極值.以及會運(yùn)用分類討論的數(shù)學(xué)思想解決實(shí)際問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012年四川省瀘州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)a>0,函數(shù)
(1)求證:關(guān)于x的方程沒有實(shí)數(shù)根;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)數(shù)列{xn}滿足,當(dāng)a=2且,證明:對任意m∈N*都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京市西城區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)a>0,函數(shù)
(1)若曲線y=f(x)在(2,f(2))處切線的斜率為-1,求a的值;
(2)求函數(shù)f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年吉林省長春外國語學(xué)校高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)a>0,函數(shù)
(1)若曲線y=f(x)在(2,f(2))處切線的斜率為-1,求a的值;
(2)求函數(shù)f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年遼寧省朝陽市喀左三高中高三期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)a>0,函數(shù)
(1)若曲線y=f(x)在(2,f(2))處切線的斜率為-1,求a的值;
(2)求函數(shù)f(x)的極值點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案