已知函數(shù)數(shù)學(xué)公式的單調(diào)遞增區(qū)間為(-∞,+∞),則實(shí)數(shù)c的取值范圍是


  1. A.
    (1,4)
  2. B.
    (3,4)
  3. C.
    [3,4)
  4. D.
    (1,3]
C
分析:分段函數(shù)在端點(diǎn)處也要滿足單調(diào)性,對(duì)于各個(gè)定義域內(nèi)也要滿足單調(diào)遞增,根據(jù)上述信息列出不等式,求出c的取值范圍;
解答:若x≥1,可得f(x)=(c-1)2x,f(x)為增函數(shù),可得c-1>0,可得c>1;
若x<1,可得f(x)=(4-c)x+3,f(x)為增函數(shù),可得4-c>0,可得c<4;
∴1<c<4;
∵函數(shù)的單調(diào)遞增區(qū)間為(-∞,+∞),
在x=1處也滿足,可得(c-1)×21≥(4-c)+3,
c≥3,
綜上3≤c<4,
故選C;
點(diǎn)評(píng):故選C;此題主要考查函數(shù)的單調(diào)性,注意分段函數(shù)的單調(diào)性在分界點(diǎn)處也要滿足,此題是一道好題;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•順義區(qū)一模)已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f(
π
6
)|對(duì)x∈R恒成立,且f(
π
2
)<f(π).則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•奉賢區(qū)二模)已知函數(shù)f(x)=2sin2
π
4
+x)-
3
cos2x
(I)求f(x)的周期和單調(diào)遞增區(qū)間
(II)若關(guān)于x的方程f(x)-m=2在x∈[
π
4
,
π
2
]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大興區(qū)一模)已知函數(shù)f(x)是定義(0,+∞)的單調(diào)遞增函數(shù),且x∈N*時(shí),f(x)∈N*,若f[f(n)]=3n,則f(2)=
3
3
;f(4)+f(5)=
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)已知函數(shù)y=sin(2x+
π
4
)
,當(dāng)它的函數(shù)值大于零時(shí),該函數(shù)的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、理科數(shù)學(xué)(安徽卷) 題型:013

動(dòng)點(diǎn)A(x,y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針?lè)较騽蛩傩D(zhuǎn),12秒旋轉(zhuǎn)一周,已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是,則當(dāng)0≤t≤12時(shí),動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)向是

[  ]
A.

[0,1]

B.

[1,7]

C.

[7,12]

D.

[0,1]和[7,12]

查看答案和解析>>

同步練習(xí)冊(cè)答案