已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若在上至少存在一點(diǎn),使得成立,求的范圍.

(Ⅰ)上單調(diào)遞減,在上單調(diào)遞增;(Ⅱ)的取值范圍為

解析試題分析:(Ⅰ)對(duì)求導(dǎo)來(lái)判斷單調(diào)區(qū)間;(Ⅱ)在上至少存在一點(diǎn),使得成立,即不等式上有解,原不等式整理得:),轉(zhuǎn)化為求的最小值問(wèn)題.
試題解析:(Ⅰ)解:,解得:,上單調(diào)遞減,在上單調(diào)遞增;
(Ⅱ),在上至少存在一點(diǎn),使得成立,即:不等式有解,也即:)有解,記,則,,令,,,單調(diào)遞增,,即上恒成立,因此,在,在,即單調(diào)遞減,在單調(diào)遞增,,所以,的取值范圍為
方法二:令,則
,
①當(dāng)時(shí),上為增函數(shù),在上為減函數(shù),由題意可知,
②當(dāng)時(shí),上為增函數(shù),在上為減函數(shù),,由題意可知;
③當(dāng)時(shí),上為增函數(shù),在,上為減函數(shù),,由題意可知

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2) 若,恒成立,求的范圍.
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為常數(shù)).
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)若,且對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
⑴ 求函數(shù)的單調(diào)區(qū)間;
⑵ 如果對(duì)于任意的,總成立,求實(shí)數(shù)的取值范圍;
⑶ 是否存在正實(shí)數(shù),使得:當(dāng)時(shí),不等式恒成立?請(qǐng)給出結(jié)論并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是實(shí)數(shù),函數(shù),,分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱在區(qū)間上單調(diào)性一致.
(Ⅰ)設(shè),若函數(shù)在區(qū)間上單調(diào)性一致,求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),若函數(shù)在以為端點(diǎn)的開區(qū)間上單調(diào)性一致,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(Ⅰ)求的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)上只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),(其中,),且函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若,滿足,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,試探究的大小,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間)上存在一點(diǎn),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若,試求函數(shù)的單調(diào)區(qū)間;
(2)過(guò)坐標(biāo)原點(diǎn)作曲線的切線,證明:切點(diǎn)的橫坐標(biāo)為1;
(3)令,若函數(shù)在區(qū)間(0,1]上是減函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案