如圖,在三棱錐中,側(cè)面與底面垂直, 分別是的中點,,,.

(Ⅰ)求證:平面;
(Ⅱ)若點為線段的中點,求異面直線所成角的正切值.

(1)詳見解析;(2)

解析試題分析:(Ⅰ)因為中,是中位線,故,所以要證明平面,只需證明平面,因為,故只需證明,由已知側(cè)面與底面垂直且,故,從而,進而證明平面;(Ⅱ)連接,因為的中位線,則,則就是異面直線所成的角,連接,由已知得,則,在中求即可.

試題解析:(Ⅰ)分別是的中點

由①②知平面.
(Ⅱ)連接,
的中點是異面直線所成的角.
等腰直角三角形,且,
又平面平面,所以平面,
. ,.
考點:1、線面垂直的判定;2、面面垂直的性質(zhì)定理;3、異面直線所成的角.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=AB=4,∠CDA=120°.

(1)求證:BD⊥PC;
(2)設E為PC的中點,點F在線段AB上,若直線EF∥平面PAD,求AF的長;
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐中,平面,,為側(cè)棱上一點,它的正(主)視圖和側(cè)(左)視圖如圖所示.

(1)證明:平面;
(2)在的平分線上確定一點,使得平面,并求此時的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知多面體中,平面,平面,,,的中點.

(1)求證:
(2)求直線與平面所成角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為菱形,,的中點.

(1)若,求證:平面平面;
(2)點在線段上,,試確定的值,使平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是以為直徑的半圓上異于點的點,矩形所在的平面垂直于該半圓所在平面,且

(Ⅰ).求證:;
(Ⅱ).設平面與半圓弧的另一個交點為,
①.求證://;
②.若,求三棱錐E-ADF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖在四棱錐中,底面是邊長為的正方形,側(cè)面底面,且,設分別為、的中點.

(1)求證://平面
(2)求證:面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,底面為直角梯形的四棱錐中,AD∥BC,平面,BC=6.

(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案