一個口袋中裝有大小相同的2個紅球,3個黑球和4個白球,從口袋中一次摸出一個球,摸出的球不再放回.
(1)連續(xù)摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(2)如果摸出紅球,則停止摸球,求摸球次數(shù)不超過3次的概率.
(1)   (2)
(1)從袋中依次摸出2個球共有種結(jié)果,第一次摸出黑球、第二次摸出白球有種結(jié)果,則所求概率

(2)第一次摸出紅球的概率為,第二次摸出紅球的概率為,第三次摸出紅球的概率為,則摸球次數(shù)不超過3次的概率為
.或P= .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

小王經(jīng)營一家面包店,每天從生產(chǎn)商處訂購一種品牌現(xiàn)烤面包出售.已知每賣出一個現(xiàn)烤面包可獲利10元,若當天賣不完,則未賣出的現(xiàn)烤面包因過期每個虧損5元.經(jīng)統(tǒng)計,得到在某月(30天)中,小王每天售出的現(xiàn)烤面包個數(shù)及天數(shù)如下表:
售出個數(shù)
10
11
12
13
14
15
天數(shù)
3
3
3
6
9
6
試依據(jù)以頻率估計概率的統(tǒng)計思想,解答下列問題:
(1)計算小王某天售出該現(xiàn)烤面包超過13個的概率;
(2)若在今后的連續(xù)5天中,售出該現(xiàn)烤面包超過13個的天數(shù)大于3天,則小王決定增加訂購量.試求小王增加訂購量的概率.
(3)若小王每天訂購14個該現(xiàn)烤面包,求其一天出售該現(xiàn)烤面包所獲利潤的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為喜迎馬年新春佳節(jié),某商場在正月初六進行抽獎促銷活動,當日在該店消費滿500元的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標有 “馬”“上”“有”“錢”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“錢”字球,則停止取球.獲獎規(guī)則如下:依次取到標有“馬”“上”“有”“錢”字的球為一等獎;不分順序取到標有“馬”“上”“有”“錢”字的球,為二等獎;取到的4個球中有標有“馬”“上”“有”三個字的球為三等獎.
(1)求分別獲得一、二、三等獎的概率;
(2)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品.
(1)張三選擇方案甲抽獎,李四選擇方案乙抽獎,記他們的累計得分為X,若X≤3的概率為,求;
(2)若張三、李四兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)從區(qū)間內(nèi)任取一個實數(shù),設(shè)事件={函數(shù)在區(qū)間上有兩個不同的零點},求事件發(fā)生的概率;
(2)若連續(xù)擲兩次骰子(骰子六個面上標注的點數(shù)分別為)得到的點數(shù)分別為,記事件{恒成立},求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次
購物量
1至
4件
5至
8件
9至
12件
13至
16件
17件及
以上
顧客數(shù)(人)
x
30
25
y
10
結(jié)算時間
(分鐘/人)
1
1.5
2
2.5
3
 
已知這100位顧客中一次購物量超過8件的顧客占55%.
(1)確定x,y的值,并估計顧客一次購物的結(jié)算時間的平均值;
(2)求一位顧客一次購物的結(jié)算時間不超過2分鐘的概率.(將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在一次反恐演習(xí)中,我方三架武裝直升機分別從不同方位對同一目標發(fā)動攻擊(各
發(fā)射一枚導(dǎo)彈),由于天氣原因,三枚導(dǎo)彈命中目標的概率分別為,若至少有兩枚導(dǎo)彈命中目標方可將其摧毀,則目標被摧毀的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué).在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理、化學(xué)等其他互不相同的七個學(xué)院.現(xiàn)從這10名同學(xué)中隨機選取3名同學(xué),到希望小學(xué)進行支教活動(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2013·北京海淀模擬]已知盒中裝有3個紅球、2個白球、5個黑球,它們大小形狀完全相同,現(xiàn)需一個紅球,甲每次從中任取一個不放回,在他第一次拿到白球的條件下,第二次拿到紅球的概率(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案