【題目】已知函數(shù)fx=xR),gx=2a-1

1)求函數(shù)fx的單調(diào)區(qū)間與極值

2)若fx≥gx對(duì)恒成立,求實(shí)數(shù)a的取值范圍.

【答案】(1) 函數(shù)f(x)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

f(x)的極大值為6,極小值-26(2)

【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,即可得到函數(shù)f(x)的單調(diào)區(qū)間與極值;(2)根據(jù)函數(shù)的單調(diào)性求出端點(diǎn)值和極值,從而求出f(x)的最小值,得到關(guān)于a的不等式,求出a的范圍即可.

試題解析:

(1)令,解得,

,解得:.

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

f(x)的極大值為f(-1)=6,極小值f(3)=-26

(2)由(1)知上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,

,,,

對(duì)恒成立,

,即,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,其中向量 (x∈R),
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知f (A)=2,a= ,b= ,求邊長(zhǎng)c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面為正方形, 底面, 為棱的中點(diǎn).

1)證明: ;

2)求直線與平面所成角的正弦值;

3)若中點(diǎn),棱上是否存在一點(diǎn),使得,若存在,求出的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1的對(duì)角線AC1上任取一點(diǎn)P,以A為球心,AP為半徑作一個(gè)球.設(shè)AP=x,記該球面與正方體表面的交線的長(zhǎng)度和為f(x),則函數(shù)f(x)的圖象最有可能的是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計(jì)劃在甲、乙兩座城市共投資120萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資40萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益P與投入(單位:萬(wàn)元)滿足,乙城市收益Q與投入(單位:萬(wàn)元)滿足,設(shè)甲城市的投入為(單位:萬(wàn)元),兩個(gè)城市的總收益為(單位:萬(wàn)元).

(1)當(dāng)甲城市投資50萬(wàn)元時(shí),求此時(shí)公司總收益;

(2)試問(wèn)如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某學(xué)校高三年級(jí)共名男生中隨機(jī)抽取名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成八組,第一組;第二組,,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,若第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

)估計(jì)這所學(xué)校高三年級(jí)全體男生身高以上(含)的人數(shù).

)求第六組、第七組的頻率并補(bǔ)充完整頻率分布直方圖(鉛筆作圖并用中性筆描黑).

)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為、,求滿足的事件概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有兩個(gè)參加國(guó)際中學(xué)生交流活動(dòng)的代表名額,為此該學(xué)校高中部推薦2男1女三名候選人,初中部也推薦了1男2女三名候選人。若從6名學(xué)生中人選2人做代表。

求:(1)選出的2名同學(xué)來(lái)自不同年相級(jí)部且性別同的概率;

(2)選出的2名同學(xué)都來(lái)自高中部或都來(lái)自初中部的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知從橢圓的一個(gè)焦點(diǎn)看兩短軸端點(diǎn)所成視角為,且橢圓經(jīng)過(guò).

(1)求橢圓的方程;

(2)是否存在實(shí)數(shù),使直線與橢圓有兩個(gè)不同交點(diǎn),且為坐標(biāo)原點(diǎn)),若存在,求出的值.不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,底面是邊長(zhǎng)為2的正方形, 分別為線段, 的中點(diǎn).

(1)求證: ||平面;

(2)四棱柱的外接球的表面積為,求異面直線所成的角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案