如圖,若射線上分別存在點(diǎn),則三角形面積之比 ,如圖若不在同一平面內(nèi)的射線上分別存在點(diǎn)點(diǎn)和點(diǎn),則三棱錐體積之比     

解析試題分析:由平面圖形中點(diǎn)的性質(zhì)類(lèi)比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類(lèi)比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類(lèi)比推理出空間中體的性質(zhì).根據(jù)已知中射線上分別存在點(diǎn),則三角形面積之比 ,那么可知體積的比就是面積比乘以高的比得到 ,那么結(jié)合類(lèi)比推理可知,故答案為
考點(diǎn):類(lèi)比推理
點(diǎn)評(píng):本試題考查了類(lèi)比推理,一般步驟是:(1)找出兩類(lèi)事物之間的相似性或一致性;(2)用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

觀察下列不等式:
;②;③;…
則第個(gè)不等式為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知的三邊長(zhǎng)為,內(nèi)切圓半徑為(用),則;類(lèi)比這一結(jié)論有:若三棱錐的內(nèi)切球半徑為,則三棱錐體積           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

n個(gè)連續(xù)自然數(shù)按規(guī)律排成下表:
0   3 →  4   7 → 8  11 …
↓   ↑    ↓    ↑   ↓  ↑
1 →  2       5 →  6     9 → 10
根據(jù)規(guī)律,從2 009到2 011的箭頭方向依次為_(kāi)_______.
①↓→、凇、邸、堋

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在平面幾何里,已知直角三角形ABC中,角C為 ,AC=b,BC=a,運(yùn)用類(lèi)比方法探求空間中三棱錐的有關(guān)結(jié)論:
有三角形的勾股定理,給出空間中三棱錐的有關(guān)結(jié)論:________
若三角形ABC的外接圓的半徑為,給出空間中三棱錐的有關(guān)結(jié)論:________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若三角形的內(nèi)切圓半徑為r,三邊的長(zhǎng)分別為a,b,c,則三角形的面積S=r(a+b+c),根據(jù)類(lèi)比思想,若四面體的內(nèi)切球半徑為R,四個(gè)面的面積分別為S1、S2、S3、S4,則此四面體的體積V=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

當(dāng)時(shí),觀察下列等式:    
,
,
,
,
, 
可以推測(cè),        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

從1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推廣到第個(gè)等式為
_________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

觀察下列各式:,,,可以得出的一般結(jié)論是      

查看答案和解析>>

同步練習(xí)冊(cè)答案