用二分法求方程x3+4=6x2的一個近似解時,已經(jīng)將一根鎖定在區(qū)間(0,1)內,則下一步可斷定該根所在的區(qū)間為
 
考點:二分法求方程的近似解
專題:計算題,函數(shù)的性質及應用
分析:構造函數(shù),旅游零點存在定理,即可得出結論.
解答: 解:令f(x)=x3-6x2+4,
則f(0)=4>0,f(1)=-1<0,f(
1
2
)=
21
8
>0,
由f(
1
2
)f(1)<0知根所在區(qū)間為(
1
2
,1).
故答案為:(
1
2
,1).
點評:此題是個基礎題.考查二分法求方程的近似解,以及方程的根與函數(shù)的零點之間的關系,體現(xiàn)了轉化的思想,同時也考查了學生分析解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某商品最近30天的價格f(t)(元)與時間t滿足關系式:f(t)=
1
3
t+8,(0≤t<15,t∈N+)
-
1
3
t+18,(15≤t<30,t∈N+)
,且知銷售量g(t)與時間t滿足關系式 g(t)=-t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a>0,b>0,證明:
a
b
+
b
a
a
+
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3-4x,g(x)=2x+1,H(x)=f(x)+g(x),x∈R.
(1)設函數(shù)M(x)=
H(x)-|f(x)-g(x)|
2
,求M(x)的最大值;
(2)判斷H(x)的單調性,并用定義證明你的結論;
(3)當x∈[a,a+1](a∈R)時,求H(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=-(
1
4
x+m(
1
2
x+3(-1≤x≤1)的最大值為4,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,y=f(x-2)是偶函數(shù),且f(x)在[-4,-2]上是增函數(shù),則f(-3.5),f(-1),f(0)的大小關系為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知g(x)=lnx,其導函數(shù)為g'(x),反函數(shù)為g-1(x)
(1)求證:y=x+1的函數(shù)圖象恒不在y=g-1(x)的函數(shù)圖象的上方.
(2)設函數(shù)f(x)=eg(x)-g'(x)-a•g(x)(a∈R).若f(x)有兩個極值點x1,x2;記過點A(x1,f(x1))B(x2,f(x2))的直線斜率為k.問:是否存在a,使得k=2-a?若存在,求出a的值;若不存在,請說明理由.
(3)求證:
n
k=1
(
k
n
)n
e
e-1
.(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若定義域在[0,1]的函數(shù)f(x)滿足:
①對于任意x1,x2∈[0,1],當x1<x2時,都有f(x1)≥f(x2);
②f(0)=0;
f(
x
3
)=
1
2
f(x);
④f(1-x)+f(x)=-1,
f(
1
3
)+f(
9
2014
)
=( 。
A、-
9
16
B、-
17
32
C、-
174
343
D、-
512
1007

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一組數(shù)x1,x2,…,xn的方差是4,則2x1-1,2x2-1,…,2xn-1的標準差是
 

查看答案和解析>>

同步練習冊答案