如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為(1,4),交x軸于A、B,交y軸于D,其中B點的坐標(biāo)為(3,0)
(1)求拋物線的解析式
(2)如圖2,過點A的直線與拋物線交于點E,交y軸于點F,其中E點的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點G為PQ上一動點,則軸上是否存在一點H,使D、G、F、H四點圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標(biāo);若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點,過點作軸的垂線,垂足為,過點作直線,交線段于點,連接,使~,若存在,求出點的坐標(biāo);若不存在,說明理由.
圖1 圖2 圖3
解:(1)設(shè)所求拋物線的解析式為:,依題意,將點B(3,0)代入,得 解得:a=-1 ∴所求拋物線的解析式為:
(2)如圖6,在y軸的負半軸上取一點I,使得點F與點I關(guān)于x軸對稱,
在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…………………①
設(shè)過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),
∵點E在拋物線上且點E的橫坐標(biāo)為2,將x=2代入拋物線,得
∴點E坐標(biāo)為(2,3)
又∵拋物線圖像分別與x軸、y軸交于點A、B、D
∴當(dāng)y=0時,,∴x=-1或x=3
當(dāng)x=0時,y=-1+4=3,
∴點A(-1,0),點B(3,0),點D(0,3)
又∵拋物線的對稱軸為:直線x=1,
∴點D與點E關(guān)于PQ對稱,GD=GE…………………②
分別將點A(-1,0)、點E(2,3)代入y=kx+b,得:
解得:
過A、E兩點的一次函數(shù)解析式為:y=x+1
∴當(dāng)x=0時,y=1
∴點F坐標(biāo)為(0,1)
∴=2………………………………………③
又∵點F與點I關(guān)于x軸對稱,
∴點I坐標(biāo)為(0,-1)
∴………④
又∵要使四邊形DFHG的周長最小,由于DF是一個定值,
∴只要使DG+GH+HI最小即可
由圖形的對稱性和①、②、③,可知,
DG+GH+HF=EG+GH+HI
只有當(dāng)EI為一條直線時,EG+GH+HI最小
設(shè)過E(2,3)、I(0,-1)兩點的函數(shù)解析式為:,
分別將點E(2,3)、點I(0,-1)代入,得:
解得:
過I、E兩點的一次函數(shù)解析式為:y=2x-1
∴當(dāng)x=1時,y=1;當(dāng)y=0時,x=;
∴點G坐標(biāo)為(1,1),點H坐標(biāo)為(,0)
∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI
由③和④,可知:
DF+EI=
∴四邊形DFHG的周長最小為。
(3)如圖7,由題意可知,∠NMD=∠MDB,
要使,△DNM∽△BMD,只要使即可,
即:………………………………⑤
設(shè)點M的坐標(biāo)為(a,0),由MN∥BD,可得
△AMN∽△ABD,
∴
再由(1)、(2)可知,AM=1+a,BD=,AB=4
∴
∵,
∴⑤式可寫成:
解得 或(不合題意,舍去)∴點M的坐標(biāo)為(,0)
又∵點T在拋物線圖像上,
∴當(dāng)x=時,y= ∴點T的坐標(biāo)為(,).
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年江蘇省高一上學(xué)期開學(xué)考試數(shù)學(xué) 題型:解答題
(本題11分)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為(1,4),交x軸于A、B,交y軸于D,其中B點的坐標(biāo)為(3,0)
(1)求拋物線的解析式
(2)如圖2,過點A的直線與拋物線交于點E,交y軸于點F,其中E點的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點G為PQ上一動點,則軸上是否存在一點H,使D、G、F、H四點圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標(biāo);若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點,過點作軸的垂線,垂足為,過點作直線,交線段于點,連接,使~,若存在,求出點的坐標(biāo);若不存在,說明理由.
圖1 圖2 圖3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(文)已知函數(shù)f(x)=x3+(a-1)x2+bx(a、b為常數(shù))在x=1和x=4處取得極值.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[-2,2]時,函數(shù)y=f(x)的圖象在直線5x+2y-c=0的下方,求實數(shù)c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com