【題目】問(wèn):有多少種不同的方法將集合中的元素歸入三個(gè)(有序)集合,使得每個(gè)元素至少含于其中一個(gè)集合之中,這三個(gè)集合的交是空集,而其中任兩個(gè)集合的交都不是空集?
【答案】1230
【解析】
如圖2,考慮韋恩圖所分成的七個(gè)部分,分別用表示.
現(xiàn)將的元素填入各個(gè)部分中,由題意,知處不能填數(shù),而處必須填有數(shù)字,且所填元素互不相同(否則,相同元素將歸入區(qū)域中);處可以填或不填數(shù)字,不同的區(qū)域中不再填有相同元素(否則,又將歸入中).
用表示處所填數(shù)字的個(gè)數(shù),下同.
由對(duì)稱性,不妨按情形列舉,則有四種情形:
(1);
(2);
(3);
(4).
對(duì)于情形(1),從中各取一數(shù)分別置于格,有種方法,剩下兩數(shù)各隨意放入格,共有種方法.于是,情形(1)有種.
對(duì)于情形(2)中的,含兩個(gè)數(shù)的格有三種情形,對(duì)于其中任一情形,中取兩數(shù)放入一格,另外兩格各放一數(shù),有種,剩下一數(shù)放于格之一,有3種方法.于是,情形(2)有種.
對(duì)于情形(3)中的,含一個(gè)數(shù)的格有三種情形,對(duì)于其中任一情形,中取一數(shù)放入一格,另外取兩數(shù)放入一格,剩下兩數(shù)放入另一格,有種.于是,情形(3)有種.
對(duì)于情形(4)中的,含三個(gè)數(shù)的格有三種情形,對(duì)任一情形,中取三個(gè)數(shù)放入一格,另外的兩格各放一個(gè)數(shù),有種.于是,情形(4)有種.
綜上,共有(種).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱ABCDA1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且點(diǎn)M和N分別為B1C和D1D的中點(diǎn).
(Ⅰ)求證:MN∥平面ABCD;
(Ⅱ)求二面角D1-AC-B1的正弦值;
(Ⅲ)設(shè)E為棱A1B1上的點(diǎn).若直線NE和平面ABCD所成角的正弦值為,求線段A1E的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其圖象與軸相鄰的兩個(gè)交點(diǎn)的距離為.
(1)求函數(shù)的解析式;
(2)若將的圖象向左平移個(gè)長(zhǎng)度單位得到函數(shù)的圖象恰好經(jīng)過(guò)點(diǎn),求當(dāng)取得最小值時(shí),在上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三年級(jí)有500名學(xué)生,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)隨機(jī)抽出若干名學(xué)生在一次測(cè)試中的數(shù)學(xué)成績(jī)(滿分150分),制成如下頻率分布表:
分組 | 頻數(shù) | 頻率 |
① | ② | |
0.050 | ||
0.200 | ||
12 | 0.300 | |
0.275 | ||
4 | ③ | |
0.050 | ||
合計(jì) | ④ |
(1)①②③④處應(yīng)分別填什么?
(2)根據(jù)頻率分布表完成頻率分布直方圖.
(3)試估計(jì)該校高三年級(jí)在這次測(cè)試中數(shù)學(xué)成績(jī)的平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩臺(tái)機(jī)床同時(shí)加工直徑為10cm的零件,為了檢驗(yàn)零件的質(zhì)量,從零件中各隨機(jī)抽取6件測(cè)量,測(cè)得數(shù)據(jù)如下(單位:mm):
甲:99,100,98,100,100,103;
乙:99,100,102,99,100,100.
(1)分別計(jì)算上述兩組數(shù)據(jù)的平均數(shù)和方差
(2)根據(jù)(1)的計(jì)算結(jié)果,說(shuō)明哪一臺(tái)機(jī)床加工的零件更符合要求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點(diǎn)A(2,4)
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B、C兩點(diǎn),且BC=OA,求直線l的方程;
(3)設(shè)點(diǎn)T(t,o)滿足:存在圓M上的兩點(diǎn)P和Q,使得,求實(shí)數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓x2+y2=8內(nèi)有一點(diǎn)P0(-1,2),AB為過(guò)點(diǎn)P0且傾斜角為α的弦.
(1)當(dāng)α=時(shí),求AB的長(zhǎng);
(2)當(dāng)弦AB被點(diǎn)P0平分時(shí),寫(xiě)出直線AB的方程(用直線方程的一般式表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以點(diǎn)為圓心的圓過(guò)點(diǎn)和,線段的垂直平分線交圓于點(diǎn),且.
(1)求直線的方程;
(2)求圓的方程;
(3)是否存在點(diǎn)在圓上,使得的面積為?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?說(shuō)明理由,并求出這些點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知菱形的對(duì)角線交于點(diǎn),點(diǎn)為線段的中點(diǎn),,,將三角形沿線段折起到的位置,,如圖2所示.
(Ⅰ)證明:平面 平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com