精英家教網 > 高中數學 > 題目詳情
已知點A(-2,0),B(0,b),如果直線AB的傾斜角為45°,那么實數b等于(  )
分析:通過直線的斜率公式,直接求解b的值即可.
解答:解:因為點A(-2,0),B(0,b),直線AB的傾斜角為45°,
所以
b-0
0+2
=tan45°=1
,解得b=2.
故選B.
點評:本題考查直線的斜率的定義,斜率的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點A(-2,0),B(2,0),若點P(x,y)在曲線
x2
16
+
y2
12
=1
上,則|PA|+|PB|=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•朝陽區(qū)二模)在平面直角坐標系x0y中,已知點A(-
2
,0),B(
2
,0
),E為動點,且直線EA與直線EB的斜率之積為-
1
2

(Ⅰ)求動點E的軌跡C的方程;
(Ⅱ)設過點F(1,0)的直線l與曲線C相交于不同的兩點M,N.若點P在y軸上,且|PM|=|PN|,求點P的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(-2,0),B(2,0),如果直線3x-4y+m=0上有且只有一個點P使得 
PA
PB
=0
,那么實數 m 等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在直角坐標系xOy中,已知點A(-2,0),B (0,2
3
)
,C(2cosθ,sinθ),其中θ∈[0,
π
2
]

(1)若
AB
OC
,求tanθ的值;
(2)設點D(1,0),求
AC
 •  
BD
的最大值;
(3)設點E(a,0),a∈R,將
OC
 •  
CE
表示成θ的函數,記其最小值為f(a),求f(a)的表達式,并求f(a)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(-2,0)、B(0,2),C是圓x2+y2=1上一個動點,則△ABC的面積的最小值為
2-
2
2-
2

查看答案和解析>>

同步練習冊答案