設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實數(shù)

根;②函數(shù)”[來源:學+科+網(wǎng)Z+X+X+K]

(I)判斷函數(shù)是否是集合M中的元素,并說明理由;

(II)集合M中的元素具有下面的性質(zhì):若 的定義域為D,則對于任意

成立。試用這一性

質(zhì)證明:方程只有一個實數(shù)根;

(III)對于M中的函數(shù) 的實數(shù)根,求證:對于定義

域中任意的

 

【答案】

(I)是

(II)證明略

(III)證明略

【解析】(1)因為

所以

又因為當,所以方程有實數(shù)根0,

所以函數(shù)是集合M中的元素。                            …………4分

(2)假設(shè)方程存在兩個實數(shù)根,

                                                     …………5分

不妨設(shè),根據(jù)題意存在數(shù)

使得等式成立,                               …………7分

因為

與已知只有一個實數(shù)根;……9分

(3)不妨設(shè)為增函數(shù),

所以

又因為為減函數(shù),                       …………10分

所以                                                        …………11分

所以,

所以

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導數(shù)f′(x)滿足0<f′(x)<1”.
(Ⅰ)判斷函數(shù)f(x)=
x
2
+
sinx
4
是否是集合M中的元素,并說明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域為D,則對于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,試用這一性質(zhì)證明:方程f(x)-x=0只有一個實數(shù)根;
(Ⅲ)設(shè)x1是方程f(x)-x=0的實數(shù)根,求證:對于f(x)定義域中任意的x2、x3,當|x2-x1|<1,且|x3-x1|<1時,|f(x3)-f(x2)|<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導數(shù)f(x)滿足
0<f(x)<1”
(I)證明:函數(shù)f(x)=
3x
4
+
x3
3
(0≤x<
1
2
)是集合M中的元素;
(II)證明:函數(shù)f(x)=
3x
4
+
x3
3
(0≤x
1
2
)具有下面的性質(zhì):對于任意[m,n]⊆[0,
1
2
),都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.
(III)若集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域為D,則對于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.試用這一性質(zhì)證明:對集合M中的任一元素f(x),方程f(x)-x=0只有一個實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導數(shù)f′(x)滿足0<f′(x)<1.”
(Ⅰ)判斷函數(shù)f(x)=
x
2
+
sinx
4
是否是集合M中的元素,并說明理由;
(Ⅱ)令g(x)=f(x)-x,判斷g(x)的單調(diào)性(f(x)∈M);
(Ⅲ)設(shè)x1<x2,證明:0<f(x2)-f(x1)<x2-x1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:(1)方程f(x)-x=0有實數(shù)解;(2)函數(shù)f(x)的導數(shù)f′(x)滿足0<f′(x)<1.給出如下函數(shù):
f(x)=
x
2
+
sinx
4
;
②f(x)=x+tanx,x∈(-
π
2
,
π
2
)
;
③f(x)=log3x+1,x∈[1,+∞).
其中是集合M中的元素的有
①③
①③
.(只需填寫函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江西模擬)設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:①方程f(x)-x=0有實根;②函數(shù)f(x)的導數(shù)f′(x)滿足0<f′(x)<1.
(1)若函數(shù)f(x)為集合M中的任意一個元素,證明:方程f(x)-x=0只有一個實根;
(2)判斷函數(shù)g(x)=
x
2
-
lnx
2
+3(x>1)
是否是集合M中的元素,并說明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個元素,對于定義域中任意α,β,證明|f(α)-f(β)|≤|α-β|

查看答案和解析>>

同步練習冊答案