在△ABC中,C=45°,BC=5,AC=2
2
,則
CA
BC
=( 。
A、10
B、-10
C、10
3
D、-10
3
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:運(yùn)用向量的數(shù)量積的定義,注意夾角為π-C,由誘導(dǎo)公式,代入數(shù)據(jù)即可得到所求值.
解答: 解:在△ABC中,C=45°,BC=5,AC=2
2
,
CA
BC
=|
CA
|•|
BC
|•cos(π-C)=-5×2
2
×
2
2

=-10.
故選B.
點(diǎn)評(píng):本題考查向量的數(shù)量積的定義及運(yùn)用,注意夾角的概念,考查運(yùn)算能力,屬于基礎(chǔ)題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖的框圖回答后面的問題.
(1)當(dāng)輸入的x值為1時(shí),輸出的值為y值多大?要使輸出的y值為10,輸入的x值應(yīng)該為多少?
(2)若視x為自變量,y為函數(shù)值,試寫出函數(shù)y=f(x)的解析式;
(3)輸入的x值和輸出的y值可能相等嗎?若能,x的輸入值為多少?若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1=2,a2=4,數(shù)列{bn}滿足:bn=an+1-an,bn+1=2bn+2,
(1)求證:數(shù)列{bn+2}是等比數(shù)列(要指出首項(xiàng)與公比);
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{nbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,若a1=
6
7
,則a2011的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,且S4=2S2+8.
(Ⅰ)求公差d的值;
(理)(Ⅱ)若a1=1,Tn是數(shù)列{
1
anan+1
}
的前n項(xiàng)和,不等式Tn
1
18
(m2-5m)
對(duì)所有的n∈N*恒成立,求正整數(shù)m的最大值.
(文)(Ⅱ)若a1=1,求數(shù)列{
1
anan+1
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x-y+a=0與圓x2+y2=4交于不同兩點(diǎn)A、B,O為坐標(biāo)原點(diǎn),若向量
OA
、
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|,則a=( 。
A、±1
B、±2
C、±
1
2
D、±
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=-x2+2x-3在區(qū)間[2a-1,2]上的最小值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1.命題P:對(duì)數(shù)loga(-2t2+7t-5)有意義,Q:關(guān)于實(shí)數(shù)t的不等式t2-(a+3)t+(a+2)<0.
(1)若命題P為真,求實(shí)數(shù)t的取值范圍;
(2)若命題P是命題Q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(1,1),
b
=(-1,2),則
a
b
=( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案