設(shè)二元一次不等式組
x≥1
y≥4
x+y-6≤0
所表示的平面區(qū)域?yàn)镸,使函數(shù)y=ax(a>0,a≠1)的圖象過區(qū)域M的a的取值范圍是( 。
A、[
1
3
,1]
B、[
1
5
,
1
2
]
C、[
1
4
,
3
2
]
D、[
1
9
,
1
10
]
分析:先畫出滿足約束條件
x≥1
y≥4
x+y-6≤0
的平面區(qū)域,然后分析平面區(qū)域里各個(gè)角點(diǎn),然后將其代入y=ax中,求出a的取值范圍.
解答:精英家教網(wǎng)解:滿足約束條件
x≥1
y≥4
x+y-6≤0
的平面區(qū)域如圖示:
由圖得當(dāng)y=ax過點(diǎn)A(1,5)時(shí)a最小為
1
5
,
當(dāng)y=ax過點(diǎn)C(2,4)時(shí)a最大為
1
2

故選  B.
點(diǎn)評(píng):在解決線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域?②求出可行域各個(gè)角點(diǎn)的坐標(biāo)?③將坐標(biāo)逐一代入目標(biāo)函數(shù)?④驗(yàn)證,求出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二元一次不等式組
x+2y-19≥0
x-y+8≥0
2x+y-14≤0
所表示的平面區(qū)域?yàn)镸,使函數(shù)y=ax(a>0,a≠1)的圖象過區(qū)域M的a的取值范圍是( 。
A、[1,3]
B、[2,
10
]
C、[2,9]
D、[
10
,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二元一次不等式組
x+2y-19≥0
x-y+8≥0
2x+y-14≤0
所表示的平面區(qū)域?yàn)镸,若函數(shù)y=ax(a>0
,a≠1)的圖象沒有經(jīng)過區(qū)域M,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二元一次不等式組
x≥2
y≥1
x+2y-6≤0
所表示的平面區(qū)域?yàn)镸.若曲線x2-my2=1總經(jīng)過區(qū)域M,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,
3
4
B、[15,+∞)
C、(
3
4
,15)
D、[
3
4
,15]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•邯鄲二模)設(shè)二元一次不等式組
x≥1
y≥4
x+y-6≤0
所表示的平面區(qū)域?yàn)镸,使函數(shù)y=ax(a>0,a≠1)的圖象過區(qū)域M的a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二元一次不等式組
x+2y-19≥0
x-y+8≥0
2x+y-14≤0
所表示的平面區(qū)域?yàn)镸,則過平面區(qū)域M的所有點(diǎn)中能使
y
x
取得最大值的點(diǎn)的坐標(biāo)是
(1,9)
(1,9)

查看答案和解析>>

同步練習(xí)冊(cè)答案