已知A,BC是橢圓Wy2=1上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)點(diǎn)BW的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.

(1)(2)不可能

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)是,又點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線l1:4x-3y+6=0和直線l2x=- (p>2).若拋物線Cy2=2px上的點(diǎn)到直線l1和直線l2的距離之和的最小值為2.
(1)求拋物線C的方程;
(2)若拋物線上任意一點(diǎn)M處的切線l與直線l2交于點(diǎn)N,試問(wèn)在x軸上是否存在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知橢圓=1(ab>0)的右焦點(diǎn)為F2(1,0),點(diǎn)A在橢圓上.

(1)求橢圓方程;
(2)點(diǎn)M(x0,y0)在圓x2y2b2上,點(diǎn)M在第一象限,過(guò)點(diǎn)M作圓x2y2b2的切線交橢圓于P、Q兩點(diǎn),問(wèn)||+||+||是否為定值?如果是,求出該定值;如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的離心率為,左、右焦點(diǎn)分別為,點(diǎn)G在橢圓C上,且,的面積為3.
(1)求橢圓C的方程:
(2)設(shè)橢圓的左、右頂點(diǎn)為A,B,過(guò)的直線與橢圓交于不同的兩點(diǎn)M,N(不同于點(diǎn)A,B),探索直線AM,BN的交點(diǎn)能否在一條垂直于軸的定直線上,若能,求出這條定直線的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的焦點(diǎn)為雙曲線的一個(gè)焦點(diǎn),且兩條曲線都經(jīng)過(guò)點(diǎn).
(1)求這兩條曲線的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)在拋物線上,且它與雙曲線的左,右焦點(diǎn)構(gòu)成的三角形的面積為4,求點(diǎn) 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C=1(a>b>0)的兩個(gè)焦點(diǎn)F1,F2和上下兩個(gè)頂點(diǎn)B1,B2是一個(gè)邊長(zhǎng)為2且∠F1B1F2為60°的菱形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)F2的斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)MN,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′,求證: k·k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)又本與橢圓交于、兩不同點(diǎn),且△的面積=,其中為坐標(biāo)原點(diǎn).
(1)證明均為定值;
(2)設(shè)線段的中點(diǎn)為,求的最大值;
(3)橢圓上是否存在點(diǎn),使得?若存在,判斷△的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線Ey2=4x的焦點(diǎn)為F,準(zhǔn)線lx軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N.
 
(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圓C的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案