如圖,已知銳角∠A為定角,點P,Q分別在∠A的兩邊上,且△APQ的面積為定值S,當P,Q在什么位置時,PQ長最短.
考點:基本不等式
專題:不等式的解法及應用
分析:由S=
1
2
AP•AQ•sinA
,可得AP•AQ=
2S
sinA
.在△APQ中,由余弦定理可得:PQ2=AP2+AQ2-2AP•AQcosA,再利用基本不等式即可得出.
解答: 解:∵S=
1
2
AP•AQ•sinA
,∴AP•AQ=
2S
sinA

在△APQ中,由余弦定理可得:PQ2=AP2+AQ2-2AP•AQcosA≥2AP•AQ(1-cosA),
當且僅當AP=AQ=
2S
sinA
時取等號.
∴當且僅當AP=AQ=
2S
sinA
時,PQ最短為2
S(1-cosA)
sinA
點評:本題考查了三角形的面積計算公式、余弦定理、基本不等式,考查了推理能力和計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,E是PB的中點,AB=2AD=2CD=2,且二面角P-AC-E的大小為
π
4

(Ⅰ)求證:AC⊥平面PBC;
(Ⅱ)求三棱錐C-ABE高的大。
(Ⅲ)求直線PA與平面ACE所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式:
1-a
x-1
>a(a≥0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,有一塊邊長為6m的正方形鐵板,現(xiàn)從鐵板的四個角各截去一個邊長為x的小正方形,做成一個長方形的無蓋容器.

(Ⅰ)求這個容器的容積V(x);
(Ⅱ)為使其容積V(x)最大,求截下的小正方形的邊長x的值及容積V(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F1與拋物線y2=4x的焦點重合,原點到過點A(a,0),B(0,-b)的直線的距離是
2
7
21

(1)求橢圓C的方程;
(2)設動直線l:y=kx+m與橢圓C有且只有一個公共點P,過F1作PF1的垂直于直線l交于點Q,求證:點Q在定直線上,并求出定直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四邊形ABCD與A′ABB′都是邊長為a的正方形,點E是A′A的中點,AA′⊥平面ABCD.
(1)求證:A′C∥平面BDE;
(2)求證:平面A′AC⊥平面BDE;
(3)求三棱錐A-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C1:2x2-y2=2m2(m>0),拋物線C2頂點在坐標原點,焦點正好是雙曲線C1的左焦點F.問:是否存在過F且不垂直于x軸的直線l,使l與拋物線C2交于兩點P,Q,并且△POQ的面積為6,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在五面體ABCDE中,EA=ED=EC=2,且EA,ED,EC兩兩垂直,AB∥CE,AB=1,F(xiàn)為CD的中點.
(1)求五面體ABCDE的體積.
(2)求證:BF∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱長為2的正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是BC,A′D′的中點.
(1)求:A′C與DE所成角
(2)求:AD與平面B′EF所成的角.

查看答案和解析>>

同步練習冊答案