已知函數(shù),.
(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值;
(3)若,求使的取值范圍.
(1)最小正周期為,單調(diào)增區(qū)間是;(2)最小值是,最大值是;(3).
解析試題分析:(1)將原函數(shù)化為,可得最小正周期與單調(diào)增區(qū)間;(2)利用正弦函數(shù)的取值可得;(3)由得出范圍,與求交集.
解:
2分
(1)函數(shù)的最小正周期為, 3分
令()得,
(),
所以函數(shù)的單調(diào)增區(qū)間是(). 4分
(2)因為,所以,
所以.
所以.
所以.
所以函數(shù)在區(qū)間上的最小值是,最大值是. 7分
(3)因為,所以.
由得,,
所以,
所以或,
所以或,
當(dāng)時,使的取值范圍是. 9分
考點:的性質(zhì).
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)(2011•重慶)設(shè)α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)滿足,求函數(shù)f(x)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2014·孝感模擬)已知函數(shù)f(x)=sinωxcosωx-cos2ωx,其中ω為使f(x)能在x=時取得最大值的最小正整數(shù).
(1)求ω的值.
(2)設(shè)△ABC的三邊長a,b,c滿足b2=ac,且邊b所對的角θ的取值集合為M,當(dāng)x∈M時,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(其中>0,),且f(x)的圖象在y軸右側(cè)的第一個最高點的橫坐標(biāo)為.
(1)求的值;
(2)如果在區(qū)間的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
下圖是函數(shù))的一段圖像.
(1)寫出此函數(shù)的解析式;
(2)求該函數(shù)的對稱軸方程和對稱中心坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com