【題目】已知函數(shù)f(x)|xm||2x1|.

(1)m=-1時,求不等式f(x)≤2的解集;

(2)f(x)≤|2x1|的解集包含,求m的取值范圍.

【答案】(1);(2).

【解析】

1)零點分段法分類討論解絕對值不等式即可.

2)由題意可知f(x)≤|2x1|上恒成立,可去掉絕對值|xm|≤2,解絕對值不等式,結合不等式的解集即可求解.

(1)m=-1時,f(x)|x1||2x1|

x≥1時,f(x)3x2≤2,所以1≤x;

<x<1時,f(x)x≤2,所以<x<1;

x時,f(x)23x≤2,所以0≤x,

綜上可得原不等式f(x)≤2的解集為.

(2)由題意可知f(x)≤|2x1|上恒成立,

x時,f(x)|xm||2x1||xm|2x1≤|2x1|2x1,所以|xm|≤2,

即-2≤xm≤2,則-2xm≤2x,且(2x)max=-(2x)min0,

因此m的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點,動點在橢圓上,且使得的點恰有兩個,動點到焦點的距離的最大值為.

(1)求橢圓的方程;

(2)如圖,以橢圓的長軸為直徑作圓,過直線上的動點作圓的兩條切線,設切點分別為,若直線與橢圓交于不同的兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐D-ABC中,,且,,M,N分別是棱BC,CD的中點,下面結論正確的是(

A.B.平面ABD

C.三棱錐A-CMN的體積的最大值為D.ADBC一定不垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學、生物、地理四門中選兩科,按照等級賦分計入高考成績,等級賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學、生物、地理四門等級考試科目的考生原始成績從高到低劃分為五個等級,確定各等級人數(shù)所占比例分別為,,,,等級考試科目成績計入考生總成績時,將等級內的考生原始成績,依照等比例轉換法分別轉換到、、、五個分數(shù)區(qū)間,得到考生的等級分,等級轉換分滿分為100分.具體轉換分數(shù)區(qū)間如下表:

等級

比例

賦分區(qū)間

而等比例轉換法是通過公式計算:

其中,分別表示原始分區(qū)間的最低分和最高分,分別表示等級分區(qū)間的最低分和最高分,表示原始分,表示轉換分,當原始分為,時,等級分分別為、

假設小南的化學考試成績信息如下表:

考生科目

考試成績

成績等級

原始分區(qū)間

等級分區(qū)間

化學

75分

等級

設小南轉換后的等級成績?yōu)?/span>,根據(jù)公式得:,

所以(四舍五入取整),小南最終化學成績?yōu)?7分.

已知某年級學生有100人選了化學,以半期考試成績?yōu)樵汲煽冝D換本年級的化學等級成績,其中化學成績獲得等級的學生原始成績統(tǒng)計如下表:

成績

95

93

91

90

88

87

85

人數(shù)

1

2

3

2

3

2

2

(1)從化學成績獲得等級的學生中任取2名,求恰好有1名同學的等級成績不小于96分的概率;

(2)從化學成績獲得等級的學生中任取5名,設5名學生中等級成績不小于96分人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某多面體的三視圖如圖所示,則該多面體的各棱中,最長棱的長度為( )

A. B. C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則______________;四棱錐P-ABCD的體積為______________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓過點,離心率為.分別是橢圓的上、下頂點,是橢圓上異于的一點.

1)求橢圓的方程;

2)若點在直線上,且,求的面積;

3)過點作斜率為的直線分別交橢圓于另一點,交軸于點,且點在線段上(不包括端點),直線與直線交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.

(1)求橢圓的方程;

(2)過原點的直線與橢圓交于兩點(不是橢圓的頂點),點在橢圓上,且,直線軸分別交于兩點.

①設直線斜率分別為,證明存在常數(shù)使得,并求出的值;

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , 為線段上的點.

(1)證明: 平面;

(2)若的中點,求與平面所成的角的正切值.

查看答案和解析>>

同步練習冊答案