在平面直角坐標(biāo)系xOy中,已知A(0,-1),B(-3,-4)兩點(diǎn),若點(diǎn)C在∠AOB的平分線(xiàn)上,且|數(shù)學(xué)公式=數(shù)學(xué)公式,則點(diǎn)C的坐標(biāo)是________.

(-1,-3)
分析:求出方向上的單位向量,則有點(diǎn)C在∠AOB的平分線(xiàn)上,故存在實(shí)數(shù)λ使得=λ(+),如此可以得到坐標(biāo)的參數(shù)表達(dá)式,再由|=,建立方程求出參數(shù)的值,即可得出點(diǎn)C的坐標(biāo).
解答:由題意=(0,-1),是一個(gè)單位向量,
由于=(-3,-4),故方向上的單位向量=(-,-),
∵點(diǎn)C在∠AOB的平分線(xiàn)上,∴存在實(shí)數(shù)λ使得=λ(+)=λ(-,-1-)=λ(-,-),
∵|=
∴λ2×(+)=10,解得λ=
代入得得=(-1,-3)
故答案為:(-1,-3)
點(diǎn)評(píng):本題考查向量的坐標(biāo)運(yùn)算,向量的求模公式,綜合性較強(qiáng),解決本題關(guān)鍵是認(rèn)識(shí)到角平分線(xiàn)與向量的關(guān)系,求出方向上的單位向量,用待定系數(shù)法將向量表示出來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知以O(shè)為圓心的圓與直線(xiàn)l:y=mx+(3-4m),(m∈R)恒有公共點(diǎn),且要求使圓O的面積最小.
(1)寫(xiě)出圓O的方程;
(2)圓O與x軸相交于A(yíng)、B兩點(diǎn),圓內(nèi)動(dòng)點(diǎn)P使|
PA
|
、|
PO
|
、|
PB
|
成等比數(shù)列,求
PA
PB
的范圍;
(3)已知定點(diǎn)Q(-4,3),直線(xiàn)l與圓O交于M、N兩點(diǎn),試判斷
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此時(shí)直線(xiàn)l的方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線(xiàn)y=-3上,M點(diǎn)滿(mǎn)足
MB
OA
,
MA
AB
=
MB
BA
,M點(diǎn)的軌跡為曲線(xiàn)C.
(Ⅰ)求C的方程;
(Ⅱ)P為C上的動(dòng)點(diǎn),l為C在P點(diǎn)處的切線(xiàn),求O點(diǎn)到l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(1,0),B(0,1),點(diǎn)C在第二象限內(nèi),∠AOC=
6
,且|OC|=2,若
OC
OA
OB
,則λ,μ的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線(xiàn)l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立相應(yīng)的極坐標(biāo)系.在此極坐標(biāo)系中,若圓C的極坐標(biāo)方程為ρ=2cosθ,則圓心C到直線(xiàn)l的距離為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)M(3
2
,
2
),橢圓的離心率e=
2
2
3

(1)求橢圓C的方程;
(2)過(guò)點(diǎn)M作兩直線(xiàn)與橢圓C分別交于相異兩點(diǎn)A、B.若∠AMB的平分線(xiàn)與y軸平行,試探究直線(xiàn)AB的斜率是否為定值?若是,請(qǐng)給予證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案