【題目】在直角坐標系中,直線,圓.以原點為極點,軸的正半軸為極軸建立極坐標系.

1)求的極坐標方程;

2)若直線的極坐標方程為,設(shè)的交點為、,求.

【答案】1;(2.

【解析】

1)由可得出曲線的極坐標方程;

2)解法一:求出直線的普通方程,利用點到直線的距離公式計算出圓的圓心到直線的距離,再利用勾股定理計算出

解法二:設(shè)點、的極坐標分別為、,將圓的方程化為極坐標方程,并將直線的方程與圓的極坐標方程聯(lián)立,得出關(guān)于的二次方程,列出韋達定理,可得出,從而計算出.

1)由直線,可得的極坐標方程為;

2)解法一:由直線的極坐標方程為,

得直線的直角坐標方程為,即.

的圓心坐標為,半徑為

則圓心到直線的距離,

解法二:圓的普通方程為,

化為極坐標方程得,

設(shè)點、的極坐標分別為、,

將直線的極坐標方程代入圓的極坐標方程得,,

由韋達定理得,

因此,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)當=-1時,求的單調(diào)區(qū)間及值域;

(2)若在()上為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為拋物線的焦點,為拋物線上三點,且點在第一象限,直線經(jīng)過點與拋物線在點處的切線平行,點的中點.

(1)證明:軸平行;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓M=1a>b>c)的一個頂點坐標為(0,1),焦距為2.若直線y=x+m與橢圓M有兩個不同的交點A,B

I)求橢圓M的方程;

II)將表示為m的函數(shù),并求△OAB面積的最大值(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員到籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據(jù)統(tǒng)計結(jié)果繪制如下頻率分布直方圖:

(I)依據(jù)頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數(shù);

(II)在某場比賽中,考察他前4次投籃命中時到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,且的極值點.

(Ⅰ) 的極大值點,求的單調(diào)區(qū)間(用表示);

(Ⅱ)恰有1解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某市工薪階層關(guān)于“樓市限購政策”的態(tài)度進行調(diào)查,隨機抽查了人,他們月收入(單位:百元)的頻數(shù)分布及對“樓市限購政策”贊成人數(shù)如下表:

月收入(百元)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

12

5

2

1

(1))根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并回答是否有的把握認為月收入以百元為分界點對“樓市限購政策”的態(tài)度有差異?

月收入低于55百元人數(shù)

月收入不低于55百元人數(shù)

總計

贊成

不贊成

總計

(2)若從月收入在的被調(diào)查對象中隨機選取人進行調(diào)查,求至少有一人贊成“樓市限購政策”的概率.

(參考公式:,其中

參考值表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠修建一個長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米.

1)求底面積,并用含x的表達式表示池壁面積;

2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標方程;

(2)若曲線截直線所得線段的中點坐標為,求的斜率.

查看答案和解析>>

同步練習冊答案