【題目】某單位需要從甲、乙人中選拔一人參加新崗位培訓,特別組織了個專項的考試,成績統(tǒng)計如下:
第一項 | 第二項 | 第三項 | 第四項 | 第五項 | |
甲的成績 | |||||
乙的成績 |
(1)根據(jù)有關統(tǒng)計知識,回答問題:若從甲、乙人中選出人參加新崗培訓,你認為選誰合適,請說明理由;
(2)根據(jù)有關槪率知識,解答以下問題:
從甲、乙人的成績中各隨機抽取一個,設抽到甲的成績?yōu)?/span>,抽到乙的成績?yōu)?/span>,用表示滿足條件的事件,求事件的概率.
【答案】(1) 派甲適合;(2)
【解析】試題分析:(1)計算兩者成績的平均數(shù)和方差,平均數(shù)相等,故選擇方差較小的比較穩(wěn)定.(2)利用列舉法列出所有的可能性有種,其中符合題意的有種,由此求得概率為.
試題解析:
(1)甲的平均成績?yōu)?/span>,乙的平均成績?yōu)?/span>,故甲乙二人的平均水平一樣. 甲的成績方差,乙的成績方差, ,故應派甲適合.
(2)從甲乙二人的成績中各隨機抽一個,設甲抽到的成績?yōu)?/span>,乙抽到的成績?yōu)?/span> ,則所有的 有 共 個,其中滿足條件 的有, 共有 個,所求事件的概率為 .
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列滿足, .
(1)證明:數(shù)列是等差數(shù)列;
(2)設,數(shù)列的前項和為,對任意的, , 恒成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,
,平面底面,為的中點,為正三角形,是棱上的一點(異于端點).
(Ⅰ)若為中點,求證:平面;
(Ⅱ)是否存在點,使二面角的大小為30°.若存在,求出點的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年利潤(單位:萬元)的影響,對近5年的宣傳費和年利潤()進行了統(tǒng)計,列出了下表:
(單位:千元) | 2 | 4 | 7 | 17 | 30 |
(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
員工小王和小李分別提供了不同的方案.
(1)小王準備用線性回歸模型擬合與的關系,請你幫助建立關于的線性回歸方程;(系數(shù)精確到0.01)
(2)小李決定選擇對數(shù)回歸模型擬合與的關系,得到了回歸方程:,并提供了相關指數(shù).請用相關指數(shù)說明選擇哪個模型更合適,并預測年宣傳費為4萬元的年利潤.(精確到0.01)(小王也提供了他的分析分析數(shù)據(jù))
參考公式:相關指數(shù)
回歸方程中斜率和截距的最小二乘估計公式分別為:
,.參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為選拔參加“全市高中數(shù)學競賽”的選手,某中學舉行了一次“數(shù)學競賽”活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為分)作為樣本(樣本容量為)進行統(tǒng)計.按照的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).
(1)求樣本容和頻率分布直方圖中的值并求出抽取學生的平均分;
(2)在選取的樣本中,從競賽成績在分以上(含分)的學生中隨機抽取名學生參加“全市中數(shù)學競賽”求所抽取的名學生中至少有一人得分在內的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當a=﹣2時,求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若g(x)= +在1,+∞)上是單調函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐PABCD中,底面ABCD是正方形,側棱PD垂直于底面ABCD,PD=DC,點E是PC的中點.
(Ⅰ)求證:PA∥平面EBD;
(Ⅱ)求二面角EBDP的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在點處的切線方程;
(2)求函數(shù)的單調區(qū)間;
(3)若存在,使得(是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com