【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.
(1)求橢圓的方程;
(2)設不過原點的直線與該橢圓交于兩點,滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)設出橢圓的方程,將已知點代入橢圓的方程及利用橢圓的離心率公式得到關于橢圓的三個參數(shù)的等式,解方程組求出a,b,c的值,代入橢圓方程即可.
(2)設出直線的方程,將直線方程與橢圓方程聯(lián)立,消去x得到關于y的二次方程,利用韋達定理得到關于兩個交點的坐標的關系,將直線OP,PQ,OQ的斜率用坐標表示,據(jù)已知三個斜率成等比數(shù)列,列出方程,將韋達定理得到的等式代入,求出k的值,利用判別式大于0得到m的范圍,將△OPQ面積用m表示,求出面積的范圍.
試題解析:
(1)根據(jù)題意可設橢圓方程為,則
則故,所以,橢圓方程為.
(2)根據(jù)題意可以知道,直線l的斜率存在且不為0,
故可設直線l的方程為,,,
由消去y得
,
則,
且,.
故.
因為直線OP,PQ,OQ的斜率依次成等比數(shù)列,
所以,
即,又,所以,即.
因為直線OP,OQ的斜率存在,且,得
且.設d為點O到直線l的距離,
則,
所以的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】在鈍角△ABC中,∠A為鈍角,令,若.現(xiàn)給出下面結論:
①當時,點D是△ABC的重心;
②記△ABD,△ACD的面積分別為,,當時,;
③若點D在△ABC內部(不含邊界),則的取值范圍是;
④若點D在線段BC上(不在端點),則
⑤若,其中點E在直線BC上,則當時,.
其中正確的有(寫出所有正確結論的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代數(shù)學名著,也是古代東方數(shù)學的代表作.書中有如下問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“已知直角三角形兩直角邊長分別為5步和12步,問其內接正方形邊長為多少步?”現(xiàn)若向此三角形內投豆子,則落在其內接正方形內的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在“六一”聯(lián)歡會上設有一個抽獎游戲.抽獎箱中共有12張紙條,分一等獎、二等獎、三等獎、無獎四種.從中任取一張,不中獎的概率為,中二等獎或三等獎的概率是.
(Ⅰ)求任取一張,中一等獎的概率;
(Ⅱ)若中一等獎或二等獎的概率是,求任取一張,中三等獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC邊上的高AM所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0與BC相交于點P,若點B的坐標為(1,2).
(1)分別求AB和BC所在直線的方程;
(2)求P點坐標和AC所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)x(個) | 2 | 3 | 4 | 5 |
加工的時間y(小時) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關于x的線性回歸方程=bx+a,
(3)試預測加工20個零件需要多少小時?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,我校舉行傳統(tǒng)文化知識競賽.其中兩位選手在個人追逐賽中的比賽得分如莖葉圖所示,則下列說法正確的是( )
A. 甲的平均數(shù)大于乙的平均數(shù)
B. 甲的中位數(shù)大于乙的中位數(shù)
C. 甲的方差大于乙的方差
D. 甲的平均數(shù)等于乙的中位數(shù)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com