(本小題12分)如圖,已知橢圓的長軸為,過點的直線軸垂直.直線所經(jīng)過的定點恰好是橢圓的一個頂點,且橢圓的離心率。

(1)求橢圓的標準方程;

(2)設(shè)是橢圓上異于的任意一點,軸,為垂足,延長到點使得,連結(jié)延長交直線于點,的中點.試判斷直線與以為直徑的圓的位置關(guān)系。

 

 

 

 

 

 

 

【答案】

解:(1)將整理得

       解方程組得直線所經(jīng)過的定點(0,1),所以

      由離心率

所以橢圓的標準方程為

(2)設(shè),則

,∴.∴

點在以為圓心,2為半徑的的圓上.即點在

為直徑的圓上.

,∴直線的方程為

,得.又,的中點,∴

,

.∴直線與圓相切.

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2010-2011學年湖南省常德市高三質(zhì)量檢測考試數(shù)學理卷 題型:解答題

     (本小題12分)

如圖3,已知在側(cè)棱垂直于底面

的三棱柱中,AC=BC, AC⊥BC,點D是A1B1中點.

(1)求證:平面AC1D⊥平面A1ABB1;

(2)若AC1與平面A1ABB1所成角的正弦值

,求二面角D- AC1-A1的余弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河北省高三高考壓軸模擬考試文數(shù) 題型:解答題

(本小題12分)如圖,四棱錐中,

側(cè)面是邊長為2的正三角形,且與底面垂直,底面的菱形,的中點.

(1)與底面所成角的大。

(2)求證:平面;

(3)求二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆海南省高一上學期教學質(zhì)量監(jiān)測三數(shù)學 題型:解答題

(本小題12分)如圖,四棱錐中,底面是正方形,, 底面,    分別在上,且

(1)求證:平面∥平面

(2)求直線與平面面所成角的正弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年海南省高二下學期質(zhì)量檢測數(shù)學文卷(一) 題型:解答題

(本小題12分)

如圖:⊙O為△ABC的外接圓,AB=AC,過點A的直線交⊙O于D,交BC延長線于F,DE是BD的延長線,連接CD。

①  求證:∠EDF=∠CDF;   

②求證:AB2=AF·AD。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010集寧一中學高三年級理科數(shù)學第一學期期末考試試題 題型:解答題

(本小題12分)如圖,四面體ABCD中,O、E分別是BD、BC的中點,

    (I)求證:平面BCD;

    (II)求異面直線AB與CD所成角的大。

    (III)求點E到平面ACD的距離。

 

查看答案和解析>>

同步練習冊答案